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Abstract We study typical half-space problems of rarefied gas dynamics, includ-
ing the problems of Milne and Kramer, for a general discrete model of a quan-
tum kinetic equation for excitations in a Bose gas. In the discrete case the plane
stationary quantum kinetic equation reduces to a system of ordinary differential
equations. These systems are studied close to equilibrium and are proved to have
the same structure as corresponding systems for the discrete Boltzmann equation.
Then a classification of well-posed half-space problems for the homogeneous, as
well as the inhomogeneous, linearized discrete kinetic equation can be made. The
number of additional conditions that need to be imposed for well-posedness is
given by some characteristic numbers. These characteristic numbers are calcu-
lated for discrete models axially symmetric with respect to the x-axis. When the
characteristic numbers change is found in the discrete as well as the continuous
case. As an illustration explicit solutions are found for a small-sized model.
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of Arkeryd and Nouri [2] we are interested in the equation8<: p1 dF
dx

= C12 (F)+GC22 (F) ,

F (0;p) = F0 (p) for p1 > 0;
(1)

where F = F (x;p) denotes the distribution function of the excitations, G 2 R+ =
fx 2 R jx� 0g is constant, x 2 R+, p =

�
p1; p2; p3

�
2 R3, and F0 = F0 (p) is

given, with the collision integrals

C12 (F) = n
Z

d0d3
�
(1 + F�)F 0F 0��F�

�
1 + F 0

��
1 + F 0�

��
dp�dp0dp0�,

with

d0 = d
�
p��p0�p0�

�
d

�
p2
�+ n�

�
p0
�2�

�
p0�
�2
�

and

d3 = d (p��p)�d
�
p0�p

�
�d

�
p0��p

�
;

and

C22 (F) =
Z

d1
�
(1 + F)(1 + F�)F 0F 0��FF�

�
1 + F 0

��
1 + F 0�

��
dp�dp0dp0�

with
d1 = d

�
p+p��p0�p0�

�
d

�
p2 +p2

��
�
p0
�2�

�
p0�
�2
�

:

Here and below we use the notation F 0� = F (x;p0�) etc.. The density of the conden-
sate, nc, is assumed to be constant, nc = n (cf. [2]). In the Nordheim-Boltzmann
[24] (or the Uehling-Uhlenbeck [28]) collision integral C22 (F) binary collisions
between excited atoms are considered, while in the collision integral C12 (F) bi-
nary collisions involving one condensate atom are considered [33].

If the distribution function F is close to an equilibrium distribution, i.e. a
Planckian

P =
1

ea(jpj2+n)+b �p�1
=

1

ea(jp�p0j2+n0)�1
;

with a > 0, b 2 R3, p0 = �b

2
, and n0 = n� jp0j2, cf. [2], then the non-linear

equation (1) can be approximated by the linearized equation8<: p1 d f
dx

+ L f = 0, f = f (x;p)

f (0;p) = f0 (p) for p1 > 0;
(2)

where

F = P +(P(1 + P))1=2 f , F0 = P +(P(1 + P))1=2 f0, and L = L12 +G L22,F f is
given, with the collision integrals

C
=

1
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and

L22 f =
Z

d1

h�
PP��P0(1 + P + P�)

�
(P0�(1 + P0�))

1=2 f 0�+�
PP��P0�(1 + P + P�)

�
(P0(1 + P0))1=2 f 0+�

P(1 + P0+ P0�)�P0P0�
�

(P�(1 + P�))1=2 f�+�
P�(1 + P0+ P0�)�P0P0�

�
(P(1 + P))1=2 f

i
dp�dp0dp0�:

It can be shown (cf. [2] for L12 and, for example, [16] for the linearized Boltzmann
operator) that the linearized operators L12 and L22, and so also L, (all acting in the
velocity space) are symmetric and positive semi-definite operators on L2.

In the paper [2], Arkeryd and Nouri studied the Milne problem for the lin-
earized equation (2), with G = 0, F = P(1 + f ), and a cut-off at l > 0 in the
integrand of L, such that jpj ; jp�j ; jp0j ; jp0�j � l . The corresponding linearized
half-space problems for the Boltzmann equation is well-studied [3,17,20], see
also [4] and references therein.

In this paper we discretize the variable p and obtain a general discrete model
for Eq.(1), which is similar to the discrete Boltzmann equation (a general discrete
velocity model, DVM, for the Boltzmann equation) [14]. It is a well-known fact
that the Boltzmann equation can be approximated up to any order of DVMs [11,
25,18], which motivated us to introduce discrete models also for this equation. By
the discretization, Eq.(1) reduces to a system of ordinary differential equations.
We find that the discrete linearized quantum kinetic equation (the discrete version
of Eq.(2)) has the same structure as the linearized discrete Boltzmann equation.
This means that the linearized operator is symmetric and positive semi-definite,
and that the null-space is non-trivial. One difference is that the mass flow is not
constant (with respect to the variable x) as for the discrete Boltzmann equation.
However, this cause us no difficulties, in difference to in the continuous case in [2],
since the structure will still be the same. A classification of well-posed half-space
problems for the homogeneous, as well as the inhomogeneous, linearized discrete
Boltzmann equation has been made in [5] (which is a continuation of the paper
[9]), based on the dimensions of the stable, unstable and center manifolds of the
singular points (Maxwellians for DVMs). We establish similar results in our case.
This means, that we, in addition to adding the Nordheim-Boltzmann (or Uehling-
Uhlenbeck) collision integral C22 (F), also can introduce an inhomogeneous term
and more general boundary conditions. Similar results can also be established
for the discrete Nordheim-Boltzmann (or Uehling-Uhlenbeck) equation and the
discrete anyon Boltzmann equation (see Remark 6 and 7 in Section 4).

Furthermore, we have, for axially symmetric discrete models with respect to
the x-axis, made a table of some characteristic numbers, from which we, by The-
orem 1, can obtain the dimensions of the stable, unstable and center manifolds of
the singular points (Planckians in our case). This includes determining when the
characteristic numbers change, not only in the discrete, but also in the continuous
case (cf. [7,5] for DVMs and [17] for the Boltzmann equation).

Nonlinear half-space problems for the Boltzmann equation have also been
studied for small perturbations of the singular points (Maxwellians for the Boltz-
mann equation), see for example [6,21,22,29] for the discrete Boltzmann equation
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and [30,19,32] for the continuous Boltzmann equation. In the discrete case similar
results to the ones in [6] can be obtained for the quantum kinetic equation (1).

We want to make clear that the aim of the paper is not the study of the gen-
eral half-space problem we obtain, since it is already well studied for the discrete
Boltzmann equation [9,5]. The novelty of the paper is instead the introduction of
discrete models for the equation for the distribution function of excited atoms in-
teracting with a Bose-Einstein condensate and the studies of those models. These
studies includes that we by the right linearization end up with a system having sim-
ilar properties as the one obtained for the discrete Boltzmann equation. It makes
it, as mentioned above, possible to extend the results in [2] obtained for the con-
tinuous equation. The same is true also for the discrete Nordheim-Boltzmann (or
Uehling-Uhlenbeck) equation and the discrete anyon Boltzmann equation (see Re-
mark 6 and 7 in Section 4). However, in concrete situations, it will look different
depending on which equation we study. One difference is the characteristic num-
bers, studied for axially symmetric models in Section 5. Our experience from the
Boltzmann equation, make us believe that these numbers (also calculated in the
continuous case) are as important in the continuous case as in the studied discrete
case. Another difference between our equation and the Boltzmann equation, is that
in our case we will have a non-constant mass-flow. To illustrate this we created a
model that we solved explicitly and was able to give an explicit expression for the
non-constant mass flow for (see Section 6).

The remaining part of this paper is organized as follows. In Section 2 we in-
troduce a general discrete model for Eq.(1) and derive some of its properties. By
a transformation around a Planckian, we obtain a linearized operator and a non-
linear part presented in Section 3. It is shown that the system has the same struc-
ture (the linearized operator and the non-linear part have similar properties) as the
corresponding system for DVMs of the Boltzmann equation. Then some results
for the linearized discrete Boltzmann equation can be applied for the problem of
our study. These results are presented in Section 4. In Section 5 some character-
istic numbers, from which we, by Theorem 1, can obtain the dimensions of the
stable, unstable and center manifolds of the singular points (Planckians), are ob-
tained for axially symmetric discrete models with respect to the x-axis. When the
characteristic numbers change, are determined both in the discrete as well as the
continuous case. A linearized half-space problem (with G = 0) is explicitly solved
for a small-sized discrete model in Section 6.

2 Discrete model

We introduce a general discrete model for Eq.(1)

p1
i

dFi

dx
= C12i (F)+GC22i (F) , x 2 R+; i = 1; :::;N, (3)

where P = fp1; :::;pNg � Rd is a finite set, Fi = Fi (x) = F (x;pi), where F =
F (x;p) is the distribution function of the excitations, and G 2 R+ is constant.
For generality, we allow p to be of dimension d, rather than of dimension 3. We
assume that

p1
i 6= 0, for i = 1; :::;N.
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The collision operators C12i (F) are given by

C12i (F) =
N

å
j;k;l=1

(dil�di j�d
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where

Qi(F;G) =
1
2

N

å
j;k;l=1

G
kl

i j ((GkHl + HkGl)� (GiH j + H jGi))

and

bQi(F;G;H) =

1
2

N

å
j;k;l=1

G
kl

i j ((Fi + Fj)(GkHl + HkGl)� (Fk + Fl)(GiH j + H jGi)) .

A function f = f (p)
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or

Pi =
Mi

1�Mi
=

1

ea(jpij2+n)+b �pi �1
for i = 1; :::;N.

One can easily see that

hH;C12 (F)i=

n
N

å
i; j;k=1

G
i
jk ((1 + Fi)FjFk�Fi (1 + Fj)(1 + Fk))(Hi�H j�Hk) ; (13)

and so�
log

F
1 + F

;C12 (F)

�
= n

N

å
i; j;k=1

G
i
jk (1 + Fi)(1 + Fj)(1 + Fk)�d24 TFk
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for all indices such that G kl
i j 6=
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where

Li
jk f = (1 + Pj + Pk)R1=2

i fi� (Pk�Pi)R1=2
j f j� (Pj�Pi)R1=2

k fk;

and

S12i( f ;g) = n
N

å
j;k=1

G i
jkSi

jk( f ;g)�2G k
i j Sk

i j( f ;g)

R1=2
i

, i = 1; :::;N,

with

Si
jk( f ;g) =

1
2

�
R1=2

j R1=2
k ( f jgk + g j fk)�R1=2

i R1=2
j ( fig j + gi f j)�

R1=2
i R1=2

k ( figk + gi fk)
�

.

Moreover, the operators (22) and (24) read, in more explicit forms,

(L22 f )i =
N

å
j;k;l=1

G kl
i j

R1=2
i

(Pkl
i j fi + Pkl

ji f j�Pi j
kl fk�Pi j

lk fl), i = 1; :::;N (26)

where
Pkl

i j = (Pj (1 + Pk + Pl)�PkPl)R1=2
i ,

and

S22i( f ; f ; f ) =
N

å
j;k;l=1

G kl
i j

R1=2
i

�
Skl

i j ( f ; f ; f )�Si j
kl( f ; f ; f )

�
, i = 1; :::;N,

with

Skl
i j ( f ; f ; f ) = (1 + Pi + Pj)R1=2

k R1=2
l fk fl +

�
R1=2

i fi + R1=2
j f j

�
�

PkR1=2
l fl + PlR

1=2
k fk + R1=2

k R1=2
l fk fl

�
.

By Eqs.(4),(25), and the relations

Pj(1 + Pj)(Pk�Pi) = Pk(1 + Pk)(Pj�Pi) = Pi(1 + Pj)(1 + Pk);

Pi(1 + Pj + Pk) = P2P3 = Pi(1 + Pj)(1 + Pk)

for G i
jk 6= 0, we obtain the equality

hg;L12 f i= n
N

å
i; j;k=1

G
i
jkPi (1 + Pj)(1
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Similarly, by Eqs.(5),(26), and the relations

PiPj(1 + Pk)(1 + Pl) = PkPl(1 + Pi)(1 + Pj);

Pkl
i j = PkPl(1 + Pj)

p
1 + Pip

Pi

for G kl
i j 6= 0, we obtain the equality

hg;L22 f i=
1
4

N

å
i; j;k;l=1

G
kl

i j PiPj(1 + Pk
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The diagonal matrix B (6) (under our assumptions) has no zero diagonal elements
and is non-singular. We denote f (0) = f0. Then the formal solution of Eq.(29)
reads

f (x) = e�xB�1L f0 +

xZ
0

e(s�x



12

4 Half-space problems

We consider the inhomogeneous (or homogeneous if g = 0) linearized problem

B
d f
dx

+ L f = g, (33)

where g = g(x) 2 L1(R+;Rn), with one of the boundary conditions

(O) the solution tends to zero at infinity, i.e.

f (x)! 0 as x! ¥;

(P) the solution is bounded, i.e.

j f (x)j< ¥ for all x 2 R+;

(Q) the solution can be slowly increasing at infinity, i.e.

j f (x)j e�ex! 0 as x! ¥, for all e > 0.

In case of boundary condition (O) we additionally assume that

g(x) 2 N(L)? for all x 2 R+: (34)

Remark 2 The boundary condition (O) corresponds to the case when we have
made the expansion (20) around a Planckian P, such that F ! P as x! ¥. The
boundary conditions (P) and (Q) are the boundary conditions in the Milne and
Kramers problem respectively.

We can (without loss of generality) assume that

B =

�
B+ 0
0 �B�

�
; (35)

where

B+ = diag
�

p1
1; :::; p1

n+

�
and B� =�diag

�
p1

n+
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where (in the notations of (30)-(32))

Y
+(x) =

m+

å
r=1

ur

0@br(0)e�lrx +

xZ
0

e(s�x)lr
hg(s) ;uri

lr
ds

1A ,

Y
�(x) =�

q

å
r=m++1

ur

¥Z
x

e(s�x)lr
hg(s) ;uri

lr
ds ,

F
+(x) =

k+

å
i=1

yi

0@mi (0)+

xZ
0

hg(s) ;yii
h

h
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is a basis of Rn+
(see [9,5,6]), we obtain the following theorem (cf. [5]), where

we denote 8>>>>>><>>>
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Remark 3 We can also, before prescribing the set of velocities, make the change
of variables p! p+p0 (cf. Eq.(19)). We then, instead of relations (4), obtain the
relations

pi = p j +pk +p0 and jpij2 =
��p j
��2 + jpkj2 + n0,

and the collision invariants

f = a�(p +p0)+ b
�
jpj2 + n0

�
.

Moreover

N(L) = span
�

R1=2 �p1 + p1
0
�

; :::;R1=2
�

pd + pd
0

�
;R1=2

�
jpj2 + n0

��
;

and if p1
0 6= 0, then the matrix B have to be replaced with B + p1

0I.

Remark 4 Our results can be generalized to more general boundary conditions

f +(0) = C f�(0)+ h0,

where C is a given n+�n� matrix and h0 2 Rn+
(cf. [5,6]).

In order to be able to obtain existence and uniqueness of solutions of the lin-
earized half-space problems we will then need to assume that the matrix C fulfills
the condition

dim(R+�CR�)U+ = m+,

with U+ =span(u1; :::;um+), as we consider boundary condition (O), the condition

dim(R+�CR�)X+ = n+, (39)

with X+ =span(u1; :::;um+ ;y1; :::;yk+ ;z1; :::;zl), as we consider boundary condi-
tion (P), and the condition (39) or the condition

dim(R+�CR�) eX+ = n+,

with eX+

with
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where it is assumed that the collision coefficients G kl
i j satisfy the relations

G
kl

i j = G
kl
ji = G

i j
kl � 0,

with equality unless the conservation laws (5) are satisfied.
Here e = 0 corresponds to the discrete Boltzmann equation, and we have e = 1

for bosons and e =�1 for fermions.
The singular points are

P =
M

1� eM
,

where M = ea+b�p+cjpj2 , with a;c 2 R and b 2 Rd , is a Maxwellian (note that for
e = 0, P = M).

By denoting (cf. Eq.(20))

f = P +
p

RF , with R = P(1 + eP),

we obtain a system, where the linearized operator L is symmetric and positive
semi-definite, with a non-trivial null-space N(L), which for normal models will
be

N(L) = span
�

R1=2;R1=2 p1; :::;R1=2 pd ;R1=2 jpj2
�

:

For e = 0 this is a well-known fact, see for example [5], and for e = 1, L = L22,
where L22 is given in Eq.(22), in the particular case G kl

i j = 1 for all non-zero G kl
i j .

Remark 7 We introduce a discrete version of the anyon Boltzmann equation [8,
1]:

p1
i

dgi

dx
= Qa

i (g) , x 2 R+, i = 1; :::;N,

where 0� a � 1 (a = 0 for bosons and a = 1 for fermions) and

Qa
i (g) =

N

å
j;k;l=1

G
kl

i j (gkglF (gi)F (g j)�gig jF (gk)F (gl)) ,

with
F (h) = (1�ah)a (1 +(1�a)h)1�a ,

where it is assumed that the collision coefficients G kl
i j satisfy the relations

G
kl

i j = G
kl
ji = G

i j
kl � 0,

with equality unless the conservation laws (5) are satisfied.
The singular points g0 are given by

g0

F(g0)
= M

where M = ea+b�p+cjpj2 , with a;c 2 R and b 2 Rd , is a Maxwellian, or (cf. [31])

g0 =
1

w (p)+a
,



17

where
w (p)a (1 +w (p))1�a =
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Here we study instead of Eq.(33), cf. Remark 3, the equation

(B + p1
0I)

d f
dx

+ L f = g.

The linearized collision operator L has the null-space

N(L) = span(f1;f2) ,

where�
f1 = R1=2

�
p1 + p1

0
�

= R1=2 � (p1
1 + p1

0; :::; p1
N + p1

0;�p1
1 + p1

0; :::;�p1
N + p1

0)

f2 = R1=2 jpj2 = R1=2 � (jp1j2 ; :::; jpN j2 ; jp1j2 ; :::; jpN j2);
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Similar numbers have been calculated for axially symmetric DVMs around the
x-axis in [7,5].

For the continuous Boltzmann equation the degenerate values are 0 and�
r

5T
3

,

where T is the temperature of the Maxwellian M, that the linearization is made
around (cf. Eq.(20)) [17]. The values of k+, k� and l for the Boltzmann equation
are given by the table (cf. [17])

u =�
r

5T
3

u = 0 u =

r
5T
3
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We want to stress that I2I6 � I2
4 by the Cauchy-Schwarz inequality. Furthermore,

the values of k+, k� and l are given by the table

p1
0 =�p1

0+ p1
0 = 0 p1

0 = p1
0+

k+ 0 0 1 1 3 3 4
k� 4 3 3 1 1 0 0
l 0 1 0 2 0 1 0 .

In [2] the case p1
0 = 0 is considered for the continuous equation in a symmetric

setting �d656 Td [(0)]TJ/F90 10.1619846 cmm11.339 Td [(setting)-230(�8ndd [(settim 0 1a[(0)]TJ/F90 10.1619846 cmm11.339 Td [(setting)-230(�8ndd [(setk50(˚.339 Td n)-216(a)-217(symmetric)]TJ -95.866l55.8TJ
ET
q5m 0 11.3aboJ 0. J 0.350(1,ric)]TJ]TJ/7(symme)]TJ/F78 10.1619 Tf 6.27(th0 0 m 239.395 0 216(a)-217(sym5(ca-217(cons6 -11.339 Td [(setting)TJ -(�d656,ric)]Tb)20(utric)]TJtillTJ/F78 10.1619 Tf 6.-290w 03 [(,)]TJ/F86 1d [(0)]TJ
ET
q
1 0 0 1 156.429 679.718 cm
0 216(a)-217(sym8.60 1 119 338.771 691.576 cm
[]0 d 0 J S
Q
BT
/F8647 Td [(4)]TJ
ET
q
1 0 0 1 156.429 667.846 cm0 216(a)-217(sym8.5ET
 1 119 338.771 691.w 0 0 m 0 12.3 l S
Q
BT
/F8611 691.w40.1619 Tf 6.-46.8w 0-45(ca8/F75 10.-326(Explicitl S
Q
soluq5m d [(k)]f d 01.339k)]al S
Q
small-siz9846 
Q
model35 Td [(2)]TJ/F86 10.1623.8314.258 1.535 Td32190 10.161Td32213 0 T321909 Tf 9.84240.1619 Tf 6.90w 31
BT
/F86G6 cm0 216(a)-217(sym10w 3-217(cons6 -11.339 Td [(settinTd 5560(�d656 T32190)]T3221Eq.6 cm0 216(a)-217(sym33.3l S 0 1 214.5e)-250(table)]TJ
ET
q3.9230(�d656395 0 216(a)-217(sym5(he)- 0 1 214.51)-250(table)]TJ
ET
q3.928 Td [(�, T3219assumn)-2132213 )]TT32193 0 T32190hang0 T3219of213221 5.08 ri
1 0s T32190)]41 -3.57w 0 0-1 w 3 0 J 0.Remark 10.5.84TJ/F90)]TJ/5(made46 cmm11.3 691.w40.1619 Tf 6.8 w16.412 691idered)-216(for)-217(t6510.335 0 Td [17(in)-216(a)-217(symme192 3.689 Td [(=)-1 914.5e)-250(table)]TJ
ET
q131.33800 Td [17(in)-856(a)-217(sym5(he)- 0 1 21;7(in)-81ble)]TJ
ET
q3.9240.4.40tion)-2r9 cm
[]0 d 0 J 0.390(t641 5619 1d [(l)]TJ
ET
q
1 0 6 0 Td [(p7BT
25 7.5199 Tf 5. 10.1619 Tf 6.206.83 056199914.258 n9 cm
[]0 d 0 J 0.3906.83 051 J 02 [(l)]TJ
ET
q
1 406 0 Td [(p5(he)- 059.51 Td [(1)]TJ
ET
q
1 0 06.83 0509.140 Td [(I)]TJ/FTJ/F86 10.1619  0 19 9657 Td [;7(in)-81ble)]TJ
ET
q3.9230.4.40tion)-2r9 cm
[]0 d 0 J 0.3928 w 8 5619 1d [(l)]TJ
ET
q
1 0 6 0 Td [(p7BT
25 7.5199 Tf 5. 10.1619 Tf 6.219 414056199914.258 n9 cm
[]0 d 0 J 0.3919 414051 J 02 [(l)]TJ
ET
q
1 406 0 Td [(p5(he)- 059.51 Td [(1)]TJ
ET
q
1 0 19 4140509.140 Td [(I)]TJ/216(a)-217(symmet7619 9657 Td [4.51)-250(table)]TJ
ET
qme133S 0 1 214.5enote]TJ/5(me)]TJ/F78 10.1619 Tf 6.4 0 6798 w 0 0 m 0 12.3 l S
Q
q
1 0 0 1 355.807 691.576 cm
[]0 d 0 J 0.398 w 0 0 (a)-217(symme192 m
[]0 d 0 J 0.398 w 0 0 m 0 12.3g)-290(�d656 Td 6704.075 cm
[]0 d 0 J 0.324e13-217(consnm 0 12.3 l S
Q
q
1 0 0 1 0.335 0 Td [17(in)-216(a)-217(symme192 3.689 Td [(=)J/F78 10.1619 Tf 6.6)-290(�d65n.1619 Tf 7.897 2.967 T1J -(�d657.846 cmm8.983S th057 Td [j3 691.w40.1619 Tf 6.2.8140- th057 Td [idered)-216(for)-217(t6510.335 0 Td [17(in)-Tf 7.897 2.9673.902 3.6767 Td [j3 691.w216(for)-2172.8151 0 f 6.204 27(in)-216(a)-217(symme192 - 0 78 d 0 J 0.398 w 0 0 m 0 12.3g)-290(�d656.341 -3323282(s-16(f057 Td [cf.46 
Q
 [(50(1,rick)]an846 
Q
introET
em 0 12.3 l S
Q
model3 S
Q
withf 9.842 0 Td [(0)-2173.6ati-28 6TJ/F86 1pm 0 12.3 l S
Q
q
1 0 0 1 0.335 0 Td [17(in)-216(a)-217(sym70 l S3.689 Td [(=)-29314.5e)-250(table)]TJ
ET
q14)-2798 w 0 02l)]TJ/F75 10.1619 Tf 5828 Td [(�p7(in)-856(a)-217(sym5(he)- 0 1 21;7(in)-table)]TJ
ET
q3.924800 Td [17(in)-856(a)-217(sym5(he)- 0 1 21;7(in)-table)]TJ
ET
q3.924800 Td [17(in)-216(a)-217(sym5(he)- 0 1 214.51)-250(8able)]TJ
ET
q3.928 Td [(�;I)]TJ/F75 7.5199 Tf 3.70398 w 0 0 m 0 12.3 l S
Q
q
1 0 0 10.335 0 Td [(I)]TJ/0 Td [(+)]TJ
ET
q
 S3.689 Td [(=)-22194.5e)-250(576 cm
[]0 d 0 4)-0.398 w 0 0 m 0 1856(a)-217(sym5(he)- 0 1 21;7(in)-86ble)]TJ
ET
q3.924800 Td [q [(0)]TJ
ET
q
1 0 05(he)-4e1 3.13 -1+I)]TJ/FTJ/F86 10.1619 Tf 174e1 3.13 -1;7(in)-86ble)]TJ
ET
q3.924800 Td [q [(0)](4)]TJ
ET
q
15(he)-4e1 3.13 -17.846 cm0 216(a)-217(sym9 Tf 174e1 3.13 -14.51)-250(8able)]TJ
ET
q3.922 Td [(�;I)]TJ/F75 7.5199 Tf 3.70398 w 0 0 m 0 12.3 l S
Q
q
1 0 0 1 0.335 0 Td [3I)]TJ/0 Td [(+)]TJ
ET
q
 S3.689 Td [(=)-22194.5e)-250(576 cm
[]0 d 0 4)-0.398 w 0 0 m 0 1856(a)-217(sym5(he)- 0 1 21;7(in)-86ble)]TJ
ET
q3.924800 Td [q [(0)](4)]TJ
ET
q
15(he)-4e1 3.13 -17.846 cm0 FTJ/F86 10.1619 Tf 174e1 3.13 -1;7(in)-86ble)]TJ
ET
q3.924800 Td [q [(0)]TJ
ET
q
1 0 05(he)-4e1 3.13 -1+I)]TJ/216(a)-217(sym9 Tf 174e1 3.13 -14.51)-250(8able)]TJ
ET
q3.922 Td [(�;I)]TJ/F75 7.5199 Tf -201.90510.4.327 w 0 0 m 0 12.3 l S
Q
q
1 0 0 1 0.335 0 Td [47(in)-216(a)-217(sym70 l S3.689 Td [(=)-29314.5e)-250(t8ble)]TJ
ET
q14)-2798 w 0 0(the)-250(table)]TJ
ET
q)]TJ698 w 0 02l)]TJ/F75 10.1619 Tf 5828 Td [(�p7(in)-856(a)-217(sym5(he)- 0 1 21;7(in)-table)]TJ
ET
q3.924800 Td [17(in)-856(a)-217(sym5(he)- 0 1 21;7(in)-table)]TJ
ET
q3.924800 Td [17(in)-216(a)-217(sym5(he- 0 1 214.51)-250(8able)]TJ
ET
q3.928 Td [(�;I)]TJ/F75 7.5199 Tf 3.70398 w 0 0 m 0 12.3 l S
Q
q
1 0 0 1(4)]TJ57 Td [5 3.76 0 Td [(+)]TJ
ET
q
1 )]TJ57 Td [=)-22194.5e)-250(t8ble)]TJ
ET
q14)0970 0 1 214.737 691.576 cm
[]0 d 0 J 0.398 w 0 0 m 0 1856(a)-217(sym5(he)- 0 1 21;7(in)-86ble)]TJ
ET
q3.923800 Td [q [(0)]TJ
ET
q
1 0 05(he)-4e1 6.13 -1+I)]TJ/FTJ/F86 10.1619 Tf 174e1 60 1 21;7(in)-86ble)]TJ
ET
q3.924800 Td [q [(0)](4)]TJ
ET
q
15(he)-4e1 6.13 -17.846 cm0 216(a)-217(sym9 Tf 174e1 60 1 214.51)-250(8able)]TJ
ET
q3.928 Td [(�;I)]TJ/F75 7.5199 Tf 3.70398 w 0 0 m 0 12.3 l S
Q
q
1 0 0 1(4)]TJ57 Td [6 3.76 0 Td [(+)]TJ
ET
q
1 )]TJ57 Td [=)-22194.5e)-250(t8ble)]TJ
ET
q14)0960 0 1 214.737 691.576 cm
[]0 d 0 J 0.398 w 0 0 m 0 1856(a)-217(sym5(he)- 0 1 21;7(in)-86ble)]TJ
ET
q3.924800 Td [q [(0)](4)]TJ
ET
q
15(he)-4e1 6.13 -17.846 cm0 FTJ/F86 10.1619 Tf 174e1 60 1 21;7(in)-86ble)]TJ
ET
q3.924800 Td [q [(0)]TJ
ET
q
1 0 05(he)-4e1 6.13 -1+I)]TJ/216(a)-217(sym9 Tf 174e1 60 1 214.51)-250(8able)]TJ
ET
q3.922- 0 1 21;7(in)-table)]TJ
ET
q- 0 1149i-28 6TJ/F86 1where1 691.576 cm
[]0 d 0 J9.1279-38e1 60 1 21q [(0)](4)]TJ
ET
q
15(he)-4e1 6.13 -17.866 cm0 216(a)-217(sym8.5ET
 4e1 6.13 -1 3.759 0 Td [(+)]TJ
ET1.89 6.8w.429 667.846 cmq)]TJ(I)]4758 w 0 0 m 0
[]0 d 0 J 0.3912
q
 S406.363 [(l)]TJ
ET
q
1 0 6 0 Td [(pd [(+2- 059.51 Td [(1)]TJ
ET
q
1 0 12
q
 S398 69 w 0 02l)]TJ/F75 10.1619 Tf 5he)- 0 1 21n.1619 Tf 7.897 2.967 T493S 0 1 214.866 cm0 81ble
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For a flow axially symmetric around the x-axis we can reduce the system (42) to8>>>>>>>>><>>>>>>>>>:

2p
dF1

dx
= 2n

�
(1 + F1)F2

2 �F1 (1 + F2)2
�

2p
dF2

dx
=�4n

�
(1 + F1)F2

2 �F1 (1 + F2)2
�

�2p
dF3

dx
= 2n

�
(1 + F3)F2

4 �F3 (1 + F4)2
�

�2p
dF4

dx
=�4n

�
(1 + F3)F2

4 �F3 (1 + F4)2
�

: (43)

with F1 = eF1, F2 = eF2 = eF3, F3 = eF4, and F4 = eF5 = eF6. Note that the collision
invariants are p1 and jpj2.

We define the projections R+ : R4! R2 and R� : R4! R2, by

R+h = h+ = (h1;h2) and R�h = h� = (h3;h4) ;

where h = (h1;h2;h3;h4).
We consider the problem 8<:B

dF
dx

= C12(F),

F+(0) = eh0

;

where
B = (2p;2p;�2p;�2p)

and

C12 (F) = 2n
�

(1 + F1)F2
2 �F1 (1 + F2)2

�
(1;�2;0;0)+

2n
�

(1 + F3)F2
4 �F3 (1 + F4)2

�
(0;0;1;�2).

If we denote
F = P + R1=2 f ,

with

R = P(1 + P) and P =
1

e2p2 �1

�
1

e2p2
+ 1

;1;
1

e2p2
+ 1

;1
�

;

in Eq.(43) we obtain 8<:B
d f
dx

+ L f = S( f )

f +(0) = h0

;

where L is the linearized collision operator, S( f ) the nonlinear part, and h0 2 R2.
The linearized problem reads 8<:B

d f
dx

+ L f = 0

f +(0) = h0

; (44)
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where the linearized collision operator

L =
2n

sinh(p2)

0BBB@
cosh(p2) �1 0 0
�1 1

cosh(p2)
0 0

0 0 cosh(p2) �1
0 0 �1 1

cosh(p2)

1CCCA
is symmetric and positive semi-definite, and have the null-space

N(L) = span(R1=2 p1;R1=2 jpj2) = span(
�
1;cosh(p2);0;0

�
;
�
0;0;1;cosh(p2)

�
).

Since

K =

�
hy1;y1iB hy1;y2iB
�
).

1

)
�) ;

pSince
� . (0 0

0 0 cosh(Kj26J/F811619 10.1619 Tf 4 Td [(p)]TJ/F750.992/F75 10.1619 Tf 7.896 0 Td [(1)]TJ -112.655 - 7.5199 Tf 6.209 4.197 819 Tf 3.94pTd [(j Td [(p)]TJ/F75 51
q1]T7] [(�)239 Tf 365 Td [(K)]TJ/F960TJ-0.1619 Tf 43,9 TfTd28 107J/F8 0.75 10.160 0 m .5199 Tf 6.209 4.1978J 0.3F81161819 Tf 3.942 ,29 Tf -66.811 10.J/F85 162.385 -19.532.943 0 Td [(.) T540685 162.385 -19.565 Td [(Since)]TJ/F86 199 T6 5.081 8.237 Td [(�)]TJ/F85 10.4 Tf 4.62.385 -19.532Td [(;)]TJ/F81 10.1619 Tf 3.944 8.237 Td [(�)]TJ/F75 10.16-6.097 Td [(B)]TJ 0 -6.097 Td [(B)]TJ 0 -6.494 Td [(@)]TJ/F75 10.1619 Tf 10.386 28.179 Td [(cosh)]TJ/86 160.1619 Tf 18.627 0 Td [(()]TJ/F86 16.321 Td [4.704 0 5d [(i)]TJ/F86 7.5199 Tf 5.081 4.197 Td [(2)]TJ/F90 10.1619 Tf 4.258 -4.197 Td [())]TJ/F85 10.1619 Tf 3.943 0 Td [(;)]TJ/F75 10.1619 Tf 3.944 0 Td [(0)]TJ/F6 5.081 4.197 Td 65 Td [(K)]TJ/F9324 Tf 4.62.385 12 -494 Td [(@)]TJ/F75  [(21]TJ/F75 10.1619 Tf 3.943 0 Td [(.)]TJ -360.1619 Tf 18.627 0 Td [(� T546685 162.385 -19.565 Td [(Since)]TJ/F86 199 T6 5.081 8.237 Td [(�)]TJ/F85 10.4 Tf 4.62.385 Tf 4.258 -4.197 Td [())]TJ/F85 10.1619 Tf 3.943 0 Td [(;)]TJ/F75 10.1619 d [(;)]TJ/F81 10.1619 Tf 3.944 8.237 Td [(�)]TJ/F75 10.1610.1619 Tf 3.943 0 Td [(0)]TJ/F85 10.1619 Tf 5.081 0 Td [(;)]TJ/F75 10.1619 Tf 3.944 0 Td [(1)]TJ/F85 10.1619 Tf 5.081 0 Td [(;)]TJ/F7619 Tf 10.386 28.179 Td [(cosh)]T/86 160.1619 Tf 18.627 0 Td [(()]T9/F86 16.321 Td [4.704 0 Td [(p)]TJ/F75 7.2]TJ/F6 5.081 4.197 Td 81 0 Td [(;)]TJ/F75 10.166TJ/2s1
8.237 Td [())]TJ/ Td .457/ T0)]T1TJ/F75k9 Tf 13.784 0 Td [( 1085/86 160.1619+Tf 18.627 0 Td [(()]99/F86 16.321 T=-494 Td [(@)]TJ/F75  /F86 10TJ/F75k9 Tf 17J/84 0 Td [( 1084 86 16.321 Td .237 Td 627 0 Td [(()]99/F86 16.321 T=-494 Td [(0)]TJ 0 -17.886 10TJ/F751 -266.12 -494 Td [(@)]TJ/F75 24.834.258 -4.l 5.834 -21.219 Td [(N)]01250(collision)-250(operator)]7.886 10TJ/F7510.1619 d [(;)]TJ/F81 10.1619 Tf 3.944 8.237 Td [(�)-2 Td246/ T6T7]12.385 12 -34.038e619 0(symmetric)-2matrix-494 Td [(@)]TJ/F75 87.45199 Tf 5.B9 Tf 17J/84 0 Td [()]TJ/F86 10.1619 Tf.237 Td [(9 Td [(cosh)8/F75 10.1610.1619 62 0 Td [(()]TJ/F86 10.1619 L97 Td 65 Td [(K)]TJ/F925199 Tf 5ha097 Td oned [(C)]TJ 0 -6.494 Td [(A)]T12 -34.03oned [(C)ned Tdg)5(a0 -6.494 Td [(A)]Teigen)4 [(i6.4alue3 8.23797.069/F811619 10.16Explicitly)65(,50(symmetric)-25on-zero[(A)]Teigen)4 [(i6.4alue097 Td of 0(symmetric)-2matrix-494 Td [(@)]TJ/F75 203.01299 Tf 5.B9 Tf 17J/84 0 Td [()]TJ/F86 19.1619 Tf.237 Td [(9 Td [(cosh)8/F75 10.1610.1619 62 0 Td [(()]TJ/F86 19.1619 L97 Td 65 Td [(K)]TJ/F9251619 Tf 3a m .5199 4 [())]TJ/ T00)]4917.8F86518 -4.l 5.8347J/84 0 Td [(51079]TJ -24.1619 Tf.637 Td 627 0 Td [(()]99/J -24.1619 =9 Tf 4 Td [(p)]TJ/F750.86 10TJ/F75Tf.637 Td d [(@)]TJ/F75 284  10.8 10.1619 Tf 7.938 0 Td [(=79.]6J/491T540619 Tf 7.895 0 Td [(1)]TJ/F741J -8199 Tf 32.949 d [(@)]TJ/F75  8@)]23 482.005f 3.94pTd [(j)]TJ/F75 7.519)]T1619 Tf 35 696.258 cm
[]0 d 0 J 0.406 w 0 0 m 34.926 0 l S
Q
BT
/F75 10.1619 Tf 147.035 686.747 Td [(sinh)]TJ/F90710.1619 Tf 16.94 0 Td [(()]TJ/F86 17.1619 Tf 4.705 0 Td [(p)]TJ/F75 7.51211605f 3.94.641 -15.865 Td [(K)]TJ/24.451)]7.45Tf -44.131 -12.436 Td [(�2)]T9/491T540619 Tf 7.895 0 Td [(1)]TJ/F736.61310.1619 Tf 5.081 0 Td [(n)]T002)]T9/482.005f 3.9410.1619 Tf 3.944 0 Td [(1)]TJ6w 0 0 m 34.926 0 l S
Q
BT
/F75 10.1619 Tf 147.035 686.747 Td [(sinh)]TJ/F90710.1619 Tf 16.94 0 Td [(()]TJ/F86 17.1619 Tf 4.7055 T5  10971.321 T+37 Td [(�)]TJ/F859.]TJ]TJ/F75 10.1619 Tf 3.944 0 Td [(1)]TJ6w 0 0 m 34.926 0 l S
Q
BT
/F75 10.1619 Tf 147.035 686.747 Td [(sinh)]TJF90 10.1619 Tf 18.627 0 Td [(()]TJ/F86 10.1619 Tf 4.704 0 Td [(p)]TJ/F75 7.510.1614 [(�)239 Tf 385 Td [(K)]TJ/F960TJ-0.16149 Tf 3.944 8.237 Td [(�)-2578 1)]TJh)80Tf 4.25with 0(symmetric)-2corresponding[(A)]Teigen)4 [(i Td ctors .5199 Tf 6.209 4.1971166)]T2010.1.321 Tv9 Tf 13.784 0 Td [( 1(.)]TJ -24.1619 +37 Td 627 0 Td [(()]99/J -24.1619 =90.04134.926 0 l)]TJ/F75 7.51994.0.1619 Tf 4-6.097 Td [(B)]TJ 0 -6.097 Td [(B)]TJ 0 -6.494 Td [(@)]TJ/F75 10.1619 Tf 10.386 28.179 Td [(cosh)]TJ/86 110.1619 Tf 18.627 0 Td [(()]TJ/F86 10.1619 Tf 4.704 0 Td [(p)]TJ/F75 7.5199 Tf 5.081 4.18d [(p)]TJ/F75 7.5199 Tf 5081 3.688 Td [(2)]TJ/F90 10.1619 Tf 4.258 258 -4.197 Td [())]TJ/F85 10.1619 Tf 3.943 0 Td [(;)]TJ/F75 10.1619 d [(;)]TJ/F81 10.1619 Tf 3.944 8.237 Td [(�)]TJ/N

@1
( pp1

N
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28. Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein-Bose and Fermi-Dirac

gases. Phys. Rev. 43, 552-561 (1933)
29. Ukai, S.: On the half-space problem for the discrete velocity model of the Boltzmann equa-

tion. In: S. Kawashima, T. Yanagisawa (eds.) Advances in Nonlinear Partial Differential Equa-
tions and Stochastics, pp. 160-174. World Scientific (1998)

30. Ukai, S., Yang, T., Yu, S.H.: Nonlinear boundary layers of the Boltzmann equation: I. Exis-
tence. Comm. Math. Phys. 236, 373-393 (2003)

31. Wu, Y.-S.: Statistical distribution for generalized ideal gas of fractional-statistics particles.
Phys. Rev. Lett. 73, 922-925 (1994)

32. Yang, X.: The solutions for the boundary layer problem of Boltzmann equation in a halfs-
pace. J. Stat. Phys. 143, 168-196 (2011)

33. Zaremba, E., Nikuni, T., Griffin, A.: Dynamics of trapped Bose gases at finite temperatures.
J. Low Temp. Phys. 116, 277-345 (1999)


