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Abstract We study typical half-space problems of rarefied gas dynamics, includ-
ing the problems of Milne and Kramer, for a general discrete model of a quan-
tum Kinetic equation for excitations in a Bose gas. In the discrete case the plane
stationary quantum Kinetic equation reduces to a system of ordinary differential
equations. These systems are studied close to equilibrium and are proved to have
the same structure as corresponding systems for the discrete Boltzmann equation.
Then a classification of well-posed half-space problems for the homogeneous, as
well as the inhomogeneous, linearized discrete Kinetic equation can be made. The
number of additional conditions that need to be imposed for well-posedness is
given by some characteristic numbers. These characteristic numbers are calcu-
lated for discrete models axially symmetric with respect to the x-axis. When the
characteristic numbers change is found in the discrete as well as the continuous
case. As an illustration explicit solutions are found for a small-sized model.
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of Arkeryd and Nouri [2] we are interested in the equation

dF
<p1& =Cp2(F) +GCp (F),
= F(0;p) = Ry (p) for p* >0;

where F = F (x; p) denotes the distribution function of the excitations, G 2 Ry =
fx2R jx 0gis constant, x 2 Ry, p= php%4p® 2R3 and Ry = Ry(p) is
given, with the collision integrals
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Here and below we use the notation F? = F (x; p") etc.. The density of the conden-
sate, nc, is assumed to be constant, nc = n (cf. [2]). In the Nordheim-Boltzmann
[24] (or the Uehling-Uhlenbeck [28]) collision integral Cy, (F) binary collisions
between excited atoms are considered, while in the collision integral C1» (F) bi-
nary collisions involving one condensate atom are considered [33].

If the distribution function F is close to an equilibrium distribution, i.e. a
Planckian 1 1

B ea(jpj2+n)+b P 1 - ea(ip Poi®+no) 1,

witha >0, b 2R3, py = % and ng =n  jpoj?, cf. [2], then the non-linear
equation (1) can be approximated by the linearized equation

df
p dX+Lf 0, f =1f(x;p)

. @)
= £(0;p) = fo(p) for p! >0;

where

F=P+(PQL+P)'f, Fo =P+ (P(L+P))?fo,and L="Li2+GL2o.F f is
given, with the coll'ision integrals
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Z h
Lof= di PP P(1+P+P) (P'(A+P")=2f'+

PP P'(1+P+P) (P'(L+PY))21l+
PL+P'+P") PP (P (1+P)f +
P@+P'+P") PP (P(1+P))2f dp dp'dp’:

It can be shown (cf. [2] for L12 and, for example, [16] for the linearized Boltzmann
operator) that the linearized operators L1, and L2, and so also L, (all acting in the
velocity space) are symmetric and positive semi-definite operators on L?.

In the paper [2], Arkeryd and Nouri studied the Milne problem for the lin-
earized equation (2), with G =0, F = P(1+ f), and a cut-off at I > 0 in the
integrand of L, such that jpj;jp j;jp'i;jp’j 1. The corresponding linearized
half-space problems for the Boltzmann equation is well-studied [3,17,20], see
also [4] and references therein.

In this paper we discretize the variable p and obtain a general discrete model
for Eq.(1), which is similar to the discrete Boltzmann equation (a general discrete
velocity model, DVM, for the Boltzmann equation) [14]. It is a well-known fact
that the Boltzmann equation can be approximated up to any order of DVMs [11,
25,18], which motivated us to introduce discrete models also for this equation. By
the discretization, Eq.(1) reduces to a system of ordinary differential equations.
We find that the discrete linearized quantum kinetic equation (the discrete version
of Eq.(2)) has the same structure as the linearized discrete Boltzmann equation.
This means that the linearized operator is symmetric and positive semi-definite,
and that the null-space is non-trivial. One difference is that the mass flow is not
constant (with respect to the variable x) as for the discrete Boltzmann equation.
However, this cause us no difficulties, in difference to in the continuous case in [2],
since the structure will still be the same. A classification of well-posed half-space
problems for the homogeneous, as well as the inhomogeneous, linearized discrete
Boltzmann equation has been made in [5] (which is a continuation of the paper
[9]), based on the dimensions of the stable, unstable and center manifolds of the
singular points (Maxwellians for DVMs). We establish similar results in our case.
This means, that we, in addition to adding the Nordheim-Boltzmann (or Uehling-
Uhlenbeck) collision integral Cy, (F), also can introduce an inhomogeneous term
and more general boundary conditions. Similar results can also be established
for the discrete Nordheim-Boltzmann (or Uehling-Uhlenbeck) equation and the
discrete anyon Boltzmann equation (see Remark 6 and 7 in Section 4).

Furthermore, we have, for axially symmetric discrete models with respect to
the x-axis, made a table of some characteristic numbers, from which we, by The-
orem 1, can obtain the dimensions of the stable, unstable and center manifolds of
the singular points (Planckians in our case). This includes determining when the
characteristic numbers change, not only in the discrete, but also in the continuous
case (cf. [7,5] for DVMs and [17] for the Boltzmann equation).

Nonlinear half-space problems for the Boltzmann equation have also been
studied for small perturbations of the singular points (Maxwellians for the Boltz-
mann equation), see for example [6,21,22,29] for the discrete Boltzmann equation



and [30, 19, 32] for the continuous Boltzmann equation. In the discrete case similar
results to the ones in [6] can be obtained for the quantum kinetic equation (1).

We want to make clear that the aim of the paper is not the study of the gen-
eral half-space problem we obtain, since it is already well studied for the discrete
Boltzmann equation [9,5]. The novelty of the paper is instead the introduction of
discrete models for the equation for the distribution function of excited atoms in-
teracting with a Bose-Einstein condensate and the studies of those models. These
studies includes that we by the right linearization end up with a system having sim-
ilar properties as the one obtained for the discrete Boltzmann equation. It makes
it, as mentioned above, possible to extend the results in [2] obtained for the con-
tinuous equation. The same is true also for the discrete Nordheim-Boltzmann (or
Uehling-Uhlenbeck) equation and the discrete anyon Boltzmann equation (see Re-
mark 6 and 7 in Section 4). However, in concrete situations, it will look different
depending on which equation we study. One difference is the characteristic num-
bers, studied for axially symmetric models in Section 5. Our experience from the
Boltzmann equation, make us believe that these numbers (also calculated in the
continuous case) are as important in the continuous case as in the studied discrete
case. Another difference between our equation and the Boltzmann equation, is that
in our case we will have a non-constant mass-flow. To illustrate this we created a
model that we solved explicitly and was able to give an explicit expression for the
non-constant mass flow for (see Section 6).

The remaining part of this paper is organized as follows. In Section 2 we in-
troduce a general discrete model for Eq.(1) and derive some of its properties. By
a transformation around a Planckian, we obtain a linearized operator and a non-
linear part presented in Section 3. It is shown that the system has the same struc-
ture (the linearized operator and the non-linear part have similar properties) as the
corresponding system for DVMs of the Boltzmann equation. Then some results
for the linearized discrete Boltzmann equation can be applied for the problem of
our study. These results are presented in Section 4. In Section 5 some character-
istic numbers, from which we, by Theorem 1, can obtain the dimensions of the
stable, unstable and center manifolds of the singular points (Planckians), are ob-
tained for axially symmetric discrete models with respect to the x-axis. When the
characteristic numbers change, are determined both in the discrete as well as the
continuous case. A linearized half-space problem (with G = 0) is explicitly solved
for a small-sized discrete model in Section 6.

2 Discrete model

We introduce a general discrete model for Eq.(1)

piﬁ:ClZi(F)+GC22i(F),X2R+; i=1;:N, (3)

where 2 = fp1;::;png RY s a finite set, i = F (X) = F (x;pi), where F =
F (x;p) is the distribution function of the excitations, and G 2 R. is constant.
For generality, we allow p to be of dimension d, rather than of dimension 3. We
assume that



The collision operators Cy,; (F) are given by

N
Cui(F)= (dy dijj d
jikl=1



where
Q(FG)= ;j;kLG}" (GcHi +HG1)  (GiHj+H;Gi))
and
8i(F;G;H) =
;j;klﬁj“ ((Fi+F) GeHi +HGp)  (Fe+F) (GiHj +HjG)).

A function ¥ =f (p)



or M 1
p=_ 1 _ fori=1;::N.
1 M a(pi+n)+bp

One can easily see that

hH;Clz(F)i=
N .
N GLA+RIFRC RA+F)A+R)H H H): (13)
ij;k=1
and so
F N .
log —=iC2(F) =n  GiA+R)(L+F)(L+FR)
aza T
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where
L= @+P+RORZG (A RIRTES (B RORY A
and o
S12i(f;9) =n "GS9 1_§Gi}<8=<j(f;g)’i:1;:::;N,
k=1 R~
with

i l = = = =
Si(f:0) =3 RIRT (fige+gif) RR; ™ (figj+aif))
RilzzRizz(figk"'gifk) :

Moreover, the operators (22) and (24) read, in more explicit forms,

N qkl . .
(L2 f)i= . RTJZ;Z(Pilj'fi+iji'fj PIfc PUR)i=1:5N (26)
JikI=1 R
where o
Pl = (P (1+RA+R) RAR)R™,
and
N ki .
Salfifif= i SHGED SIE6D L i=LmN,
PkiI=1 R
with

SU(F 1) = A+R+PYRTR Zhif + R +R; 1)

PRI2 i + PR fi +ROR £
By Egs.(4),(25), and the relations

Pil+P)(P« P) =R@+PR)(P; PR)=RA+P)L+FR);
Pi(1+Pj+P) =P.P3=R(1+P)(1+F)

for G;} & 0, we obtain the equality
N

hg;Lipfi=n GiRA+P)@A
i;j;k=1
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Similarly, by Eqgs.(5),(26), and the relations
PPj(1+R)(1+R) = AR +P)(L+P));

1+P
Rl = ARIL+P)—P=—
1

for GX & 0, we obtain the equality

.1 N
hg;Lzzflzz G‘FIHPJ'(1+Pk
i;J;k;1=1
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The diagonal matrix B (6) (under our assumptions) has no zero diagonal elements
and is non-singular. We denote f(0) = fy. Then the formal solution of Eq.(29)

reads
7X

f)=e ® i+ e *
0
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4 Half-space problems

We consider the inhomogeneous (or homogeneous if g = 0) linearized problem

df
B&+Lf =g, (33)

where g = g(x) 2 L1(R+;R"), with one of the boundary conditions

(O) the solution tends to zero at infinity, i.e.
f(x) ¥ Oasx ¥ ¥;

(P) the solution is bounded, i.e.

jf)j<¥forall x2 R4;
(Q) the solution can be slowly increasing at infinity, i.e.

if()je * X 0asx ¥ ¥ foralle > 0.
In case of boundary condition (O) we additionally assume that
g(x) 2N(L)7 forall x 2 R+ (34)

Remark 2 The boundary condition (O) corresponds to the case when we have
made the expansion (20) around a Planckian P, such that F ¥ P asx ¥ ¥. The
boundary conditions (P) and (Q) are the boundary conditions in the Milne and
Kramers problem respectively.

We can (without loss of generality) assume that

B+ O

B= 4 g (35)

where

B. =diag pl;:ipl andB = diag pl.
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where (in the notations of (30)-(32))

© 1
m+ ZX h (S)'U i
Y+(X): Ur@br(O)e x4 gfs X)IrudsA
r=1 Ir
0
Z¥ -
q .
Y = MECLEICIL I
r=m*+1 1,
K+ yAS h (Q) -i
Fr) = vi@m)+ %

i=1 0
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is a basis of R"" (see [9,5,6]), we obtain the following theorem (cf. [5]), where

we denote s
=



15

Remark 3 We can also, before prescribing the set of velocities, make the change
of variablesp ¥ p+pg (cf. EQ.(19)). We then, instead of relations (4), obtain the
relations

pi =pj +Px+Po and jpii> = p; * +jpid’ +no,
and the collision invariants
f=a (p+py)+b jpi®+no .
Moreover
N(L)= span R'Z p'+pg ;R pl+pg (R jpi+no
and if p & 0, then the matrix B have to be replaced with B + pj|.
Remark 4 Our results can be generalized to more general boundary conditions

f*(0)=Cf (0)+ho,

where C isagivenn® n matrix and hg 2 R (cf. [5,6]).

In order to be able to obtain existence and uniqueness of solutions of the lin-
earized half-space problems we will then need to assume that the matrix C fulfills
the condition

dlm(R+ CR )U+ = m+,

with Uy =span(uy; :::;um+), as we consider boundary condition (O), the condition

dim(R+ CR )X =n", (39)

tion (P), and the condition (39) or the condition
dlm(R+ CR )g+ :n+,

with %4
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where it is assumed that the collision coefficients Gi:f' satisfy the relations
K — okl — i
Gi'=Gi =G/ 0

with equality unless the conservation laws (5) are satisfied.
Here e =0 corresponds to the discrete Boltzmann equation, and we havee =1
for bosons and e = 1 for fermions.
The singular points are
M

1 eM’
where M = e2*bP*aipi” with a;c 2 R and b 2 RY, is a Maxwellian (note that for
e=0,P=M).

By denoting (cf. Eqg.(20))

f= P+p§|:, with R = P(1+eP),

we obtain a system, where the linearized operator L is symmetric and positive
semi-definite, with a non-trivial null-space N(L), which for normal models will
be

N(L) = span R¥Z;R¥2pl;::::R72pd:R172 jpj?

For e = 0 this is a well-known fact, see for example E(S], and fore =1, L = Ly,

where Ly, is given in Eq.(22), in the particular case G = 1 for all non-zero G¥.

Remark 7 We introduce a discrete version of the anyon Boltzmann equation [8,

1]:

o139
' dx

where0 a 1 (a =0 forbosonsand a =1 for fermions) and

=Q7(9), X2 Ry, i=1;:5N,

N
Q?(9) = ) GY (@aiF (@)F @) 9igiF @)F @),
jkl=1

with
F(hy=(1 ah@@+@ a)h)t 2,

where it is assumed that the collision coefficients q}" satisfy the relations
with equality unless the conservation laws (5) are satisfied.
The singular points gg are given by
9 _
F(90)
where M = 20 P+eipi® with a;c 2 R and b 2 RY, is a Maxwellian, or (cf. [31])

1
S w(p)+a’

Jo
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where

w(p)* (L+w(p) *=
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Here we study instead of Eq.(33), cf. Remark 3, the equation
df
+pi)— +Lf=q.
(B+p5h) g, +Lf=g
The linearized collision operator L has the null-space
N(L) = span (fq;T2),
where

f1=RY2 plapg =R (pi+pgnpy+p5 Pr+peiss Py +Pp)
2 =R7Zjpj? =R™2 (jpuj*;sipnd®sipad’; i jpni®);
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Similar numbers have been calculated for axially symmetric DVMs around the
x-axis in [7,5]. r
5T

3
where T is the temperature of the Maxwellian M, that the linearization is made
around (cf. Eq.(20)) [17]. The values of k*, k and | for the Boltzmann equation
are given by the table (cf. [17])

For the continuous Boltzmann equation the degenerate values are 0 and
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We want to stress that I,lg 12 by the Cauchy-Schwarz inequality. Furthermore,
the values of k™, k and | are given by the table

Po=_ Pos Pg=0 Po = Po+
K- [0 1 1 |3 3 7
kK |4 3 30 1 |1 0 0
0 1 0o 2 |0 1 0

In [2] the case p3 = 0 is considered for the continuous equation in a symmetric
setting d656 Td [(0)]TJ/F90 10.1619846 cmm11.339 Td [(setting)-230( 8ndd [(settim 0 1a[(0)]TJ/F90 10.1619846 cmm11.339
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For a flow axially symmetric around the x-axis we can reduce the system (42) to

8
§2pddi1=2n 1+F)F; FQ+R)?
222 = an @+R)F? RA+RY
s (43)
% = (L+R)F? Ra(l+Fy)
? U= @+RIRE BA+RY

withF =B, KH=BE =K, R =F, and I, = & = . Note that the collision
invariants are p! and jpjz.
We define the projections R+ : R* ¥ R?andR :R* ¥ R? by
Rih=h*"=(hg;hy) andR h=h = (h3;hy);

where h = (hy; hy; hs;hyg).
We consider the problem

8
dF

<B— =

) de C2(F), :

" FT0)=H
where

B=(2p;2p; 2p; 2p)

and

Cp(F)=2n (1+FR)F? FR@A+R)? (1; 2;0;0)+

n (1+R)F? FR@A+R)? (0,01 2).

If we denote
F =P+R™f,
with . . .
R=P(1+P)and P = T eZp2+1;1; eZp2+1;1 ;
in Eq.(43) we obtain s
df
<
B— +Lf=S(f
_dx M :
T 7(0) =ho

where L is the linearized collision operator, S(f) the nonlinear part, and hy 2 R2.
The linearized problem reads
8
<82 Lr=0
X : (44)
T (0) =ho
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1
0

0
j26J/M81167%0 10.1619 T 4 Td [(p)] TI/F750.992/F75 10.1619 Tf 7.896 0 Td [(1)]TJ -112.655 -

1
cosh(p?)

is symmetric and positive s definite, and have the null-space

N(L) = span(R*?p*; R jpj?) = span( 1;cosh(p?);0;0 ; 0;0;1;cosh(p?) ).

Since ) )
K= Myuyiighysyaig

).
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