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Abstract. The analytically difficult problem of existence of shock wave solutions is studied for the general discrete velocity
model (DVM) with an arbitrary finite number of velocities (the discrete Boltzmann equation in terminology of H. Cabannes).
For the shock wave problem the discrete Boltzmann equation becomes a system of ordinary differential equations (dynamical
system). Then the shock waves can be seen as heteroclinic orbits connecting two singular points (Maxwellians). In this work
we give a constructive proof for the existence of solutions in the case of weak shocks.

We assume that a given Maxwellian is approached at infinity, and consider shock speeds close to a typical speed c0,
corresponding to the sound speed in the continuous case. The existence of a non-negative locally unique (up to a shift in the
independent variable) bounded solution is proved by using contraction mapping arguments (after a suitable decomposition of
the system). This solution is then shown to tend to a Maxwellian at minus infinity.

Existence of weak shock wave solutions for DVMs was proved by Bose, Illner and Ukai in 1998. In their technical proof
Bose et al. are following the lines of the pioneering work for the continuous Boltzmann equation by Caflisch and Nicolaenko.
In this work, we follow a more straightforward way, suiting the discrete case. Our approach is based on results by the authors
on the main characteristics (dimensions of corresponding stable, unstable and center manifolds) for singular points to general
dynamical systems of the same type as in the shock wave problem for DVMs. Our proof is constructive, and it is also shown
(at least implicitly) how close to the typical speed c0, the shock speed must be for our results to be valid. All results are
mathematically rigorous.

Our results are also applicable for DVMs for mixtures.
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INTRODUCTION

We are concerned with the existence of shock wave solutions f = f (x1,ξ , t) =F(x1−ct,ξ ), of the Boltzmann equation

∂ f

∂ t
+ξ ·∇x f = Q( f , f ).

Here x = (x1, ...,xd) ∈ R
d , ξ =

(
ξ 1, ...,ξ d

)
∈ R

d and t ∈ R+ denote position, velocity and time respectively. Further-

more, c > c0 denotes the speed of the wave, where c0 is the speed of sound. The solutions are assumed to approach

two given Maxwellians M± =
ρ±

(2πT±)d/2
e−|ξ−u±|2/(2T±) (ρ , u and T denote density, bulk velocity and temperature

respectively) as x→±∞, which are related through the Rankine-Hugoniot conditions.

The (shock wave) problem is to find a solution F = F(y,ξ ) (y = x1− ct) of the equation

(ξ 1− c)
∂F

∂y
= Q(F,F), (1)

such that

f →M± as y→±∞. (2)

In this paper, we consider the shock wave problem (1) ,(2) for the general discrete velocity model (DVM) (the

discrete Boltzmann equation) [1, 2]. We allow the velocity variable to take values only from a finite subset V of R
d ,

i.e. ξ ∈ V = {ξ1, ...,ξn} ⊂ R
d , where n is an arbitrary natural number.

We obtain, from Eq.(1), a system of ODEs (dynamical system)

(ξ 1
i − c)

dFi

dy
= Qi (F,F) , i = 1, ...,n, c ∈ R,
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where F = (F1, ...,Fn), with Fi = Fi (y) = F (y,ξi), i = 1, ...,n. The collision operator Q = (Q1, ...,Qn) is given by

Qi (F,G) =
1
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2. The vector(s) φ⊥ fulfilling Eqs.(4), also satisfy
〈
M+φ⊥,φ 2

⊥
〉
B−c0I

6= 0. We choose the sign of the vector φ⊥, such

that
〈
M+φ⊥,φ 2

⊥
〉
B−c0I

> 0.

3. For each c (at least in a neighborhood of c0), the number of Maxwellians M, such that the relations

〈M,φi〉B−cI = 〈M+,φi〉B−cI , i = 1, ..., p, (5)

are fulfilled, is finite.

Remark 1 Let M+ be a Maxwellian with zero bulk velocity (u = 0). Then, for the "continuous" Boltzmann equation,

M+ =
ρ

(2πT )d/2
e−|ξ |

2/(2T ). In this case (with d = 3) c0 =±
√

5T

3
(note that the assumption 1 [ii] never is fulfilled in

the continuous case), φ⊥ =
1√
2ρT

(ξ 1± |ξ |2√
15T

) and
〈
M+φ⊥,φ 2

⊥
〉
B−c0I

=
2

3

√
2T

ρ
> 0. Assumption 3 is also fulfilled

in the continuous case. There is at most one more Maxwellian M, besides M+, which fulfills Eqs.(5).

Remark 2 Assume that we have an axially symmetric normal model (if
(
ξ 1, ...,ξ d

)
∈ V , then

(
±ξ 1, ...,±ξ d

)
∈ V )

with n = 2N. Let M = Kec



BRIEF PRESENTATION OF THE PROOF

We consider

(B− cI)
dF

dy
= Q(F,F) , where F →M+ as y→ ∞,

and denote

F = M+M1/2h, with M = M+.

We obtain

(B− cI)
dh

dy
+Lh = S(h,h), where h→ 0 as y→ ∞, (6)

with

Lh =−2M−1/2Q(M,M1/2h) and S(g,h) = M−1/2Q(M1/2g,M1/2

h) M



We denote

h =
m

∑
i=0

xiui, where xi = xi(y) = 〈h,ui〉B−cI .

Then,

dxi

dy
+λixi = gi(X ,X), where X = (x0, ...,xm), gi = gi(X ,X) =

m

∑
j,k=0

x jxkg
i
jk, i = 0, ...,m, with

gijk =
1

λi

〈
ui,S(u j,uk)

〉
=

〈
L−1/2wi,S((B− cI)−1L1/2w j,(B− cI)−1L1/2wk)

〉
.

We denote by ĝi the symmetric (m+1)× (m+1) matrix with entries

(ĝi) jk = gijk, 0 ≤ j,k ≤ m,

and by Gi > 0 the maximum of the absolute values of the eigenvalues of the matrix ĝi, or, equivalently, Gi = sup
|X |=1

|ĝiX |.

Then

gi(X



Furthermore, if the functions zi = zi(t), i


