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Abstract. Existence of solutions of weakly non-linear half-space problems for

the general discrete velocity (with arbitrarily �nite number of velocities) model

of the Boltzmann equation are studied. The solutions are assumed to tend to16] and

[17], with inow boundary condition reads8>><>>:
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8>><>>:
�
�1 + u1

� @f
@x

+ L0f = S0(f; f)

f (0; �) = f0 (�) for �1 + u1 > 0;
f ! 0 as x!1;

(3)

where L0f = �2M�1=2
0 Q

�
M0;M

1=2
0 f

�
, S0(f; f) = M

�1=2
0 Q

�
M

1=2
0 f;M

1=2
0 f

�
and

M0 =
�1

(2�T1)3=2
e�j�j

2=(2T1) (cf. Ref. [21]).

The general boundary condition at x = 0 (at the wall) in Eq. (1) reads:

F (0; �) = g0 (�) +
Z

�1�<0

K(�; ��)F (0; ��) d�� for �1 > 0, (4)

where (i) g0 (�) � 0 for �1 > 0; (ii) the kernel K(�; ��), ful�lls K(�; ��) � 0 for
�1 >
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by DVMs, see Refs. [12], [22], [31] and [32], and that these approximations can be
used for numerical methods. The study of DVMs can also give a better conceptual
understanding and new ideas, which can be applied to the Boltzmann equation. In
the planar stationary case, the general DVM reduces to a system of ordinary di�er-
ential equations. We continue here the study of DVMs in the directions formulated
in Refs. [9], [10] and [7]. Important tools in these studies are the results in Ref.
[10] (see Section 2.1 below) on the dimensions of the stable, unstable and center
manifolds of the singular points (Maxwellians for DVMs).

Half-space problems for the Boltzmann equation are of great importance in the
study of the asymptotic behavior of the solutions of boundary value problems of the
Boltzmann equation for small Knudsen numbers, see Refs. [16] and [17]. For a com-
prehensive and detailed description of the asymptotic theory see Refs. [34] and [35].
The half-space problems provide the boundary conditions for the uid-dynamic-type
equations and Knudsen-layer corrections to the solution of the uid-dynamic-type
equations in a neighborhood of the boundary. Mathematical results on the half-
space problem for the Boltzmann equation for a single-component gas are reviewed
in Ref. [6]. Sone and Aoki with coworkers have under a long time considered prob-
lems related to these questions, both from a theoretical and numerical point of view,
see Refs. [34] and [35] and references therein.

The half-space problems for the linearized Boltzmann equation are well investi-
gated, see Refs. [5], [21] and [27]. A classi�cation of well-posed half-space problems
for the homogeneous, as well as the inhomogeneous, linearized discrete Boltzmann
equation has been made in Ref. [7], based on results obtained in Ref. [10]. The
results in Ref. [5
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the singular point (Maxwellian for DVMs) approached at in�nity is �xed and small
deviations of the solutions from the singular point is studied. The data for the
outgoing particles at the boundary are assigned, possibly linearly depending on the
data for the incoming particles. The conditions on the data at the boundary needed
for the existence of a unique (in a neighborhood of the assigned Maxwellian) solution
of the problem are investigated. In the non-degenerate case (corresponding, in the
continuous case, to the case when the Mach number at in�nity is di�erent of -1,
0 and 1) implicit conditions have been found by using arguments by Ukai, Yang
and Yu in Ref. [38] for the continuous Boltzmann equation. Furthermore, under
certain assumptions explicit conditions are found, both in the non-degenerate and
degenerate cases. The results extend, not only by more general boundary conditions,
but also by more general assumptions, previous results for the discrete Boltzmann
equation by Ukai in Ref. [37], and Kawashima and Nishibata in Refs. [28] and [29],
and include also (for DVMs) the results obtained by Ukai, Yang and Yu in Ref. [38]
for the continuous Boltzmann equation. Applications to axially symmetric models
have also been studied, generalizing the results by Babovsky in Ref. [2].

All results are obtained for an arbitrary �nite number of velocities. Similar
results as in this paper can also be obtained for DVMs for mixtures. Existence of
weak shock wave solutions for the discrete Boltzmann equation has also been proved
based on the same ideas in Ref. [8].

This paper is organized as follows: In Section 2, we introduce the planar station-
ary discrete Boltzmann equation and review some of its properties. We make an
expansion around an equilibrium Maxwellian, and review, Theorem 2.1 in Subsec-
tion 2.1, the results in Ref. [10] on the dimensions of the stable, unstable and center
manifolds of the system of ODEs. The problem and the main results on existence
and uniqueness are stated in Section 3 (Theorem 3.1 and Theorem 3.2). The bound-
ary conditions at the "wall" are discussed in more detail in Section 4. In particular,
inow boundary conditions and Maxwell-type boundary conditions (Subsection 4.1)
are considered. The results of [10] (stated in Theorem 2.1) are used to investigate
the number of additional conditions needed to obtain well-posedness of the weakly
non-linear problem in Section 5 and Section 6 respectively, and thereby to prove
Theorem 3.1 (Section 5) and Theorem 3.2 (Section 6) in Section 3. Implicit condi-
tions for the existence of a unique (in a neighborhood of the assigned Maxwellian)
solution in the non-degenerate case and also for the degenerate case, but then with
some restrictions on the non-linear part of the collision operator, are obtained (Sec-
tion 5). The results are in accordance with corresponding results for the continuous
Boltzmann equation obtained in the non-degenerate case, with inow boundary con-
ditions in Ref. [38
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Perthame and Sulem in Ref. [26] for the Boltzmann equation, and by Babovsky in
Ref. [2] for DVMs (with quite restrictive conditions on the non-linear part of the
collision operator). We �rst consider a plane 12-velocity DVM in Subsection 8.2,
but also a more general axially symmetric DVM (cf. Ref. [2]) in Subsection 8.3.

2. Discrete Boltzmann equation. The planar stationary system for the discrete
Boltzmann equation (DBE) reads

�1
i

dFi
dx

= Qi (F; F ) , x 2 R+; i = 1; :::; n, (5)

where V = f�1; :::; �ng, �i 2 Rd
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for all non-negative functions F . We have the trivial collision invariants (also called
the physical collision invariants) �0 = 1, �1 = �1; :::; �d = �d, �d+1 = j�j2 (including
all linear combinations of these). Here and below, we denote by h�; �i the Euclidean
scalar product on Rn.

We consider below (even if this restriction is not necessary in our general context)
only normal DVMs. That is, DVMs without spurious (or non-physical) collision
invariants, i.e. any collision invariant is of the form

� = a+ b � � + c j�j2 (11)

for some constant a; c 2 R and b 2 Rd (methods of their construction are described
in Refs. [11], [13] and [14]). In this case the equation (10) has the general solution
(11).

A Maxwellian distribution (or just a Maxwellian) is a function M = M(�), such
that

Q(M;M) = 0 and M > 0.
All Maxwellian distributions are of the form

M = e� = Aeb��+cj�j2 ; with A = ea > 0 and c < 0, (12)

where � is a collision invariant (11) (the latter equality is due to the assumption of
normal DVMs). In general a, b and c can be functions of x, but since we assume that
our solutions tend to a global, i.e. with absolute constant a, b and c, Maxwellian
at in�nity, our interest is in global Maxwellians, and so when we below refer to a
Maxwellian, we will mean a global Maxwellian.

Given a Maxwellian M we denote

F = M +M1=2f , (13)

in Eq. (5), and obtain

�1
i

dfwhet1 0 T/F1lT
q50x=�(Mi++
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Then the system (6) transforms into

B
df

dx
+ Lf = S(f; f). (16)

The diagonal matrix
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The Jordan normal form of B�1L (with respect to the basis (17)-(19)) is0BBBBBBBBBBBBBBBBBBB@

�1

. . .
�q

0
. . .

0
0 1
0 0

. . .
0 1
0 0

1CCCCCCCCCCCCCCCCCCCA

;

where there are l blocks of the type
�

0 1
0 0

�
. For any h 2 Rn, we obtain

e�xB
�1Lh =

kX
i=1

�iyi +
lX

j=1

((�j � x�j) zj + �jwj) +
qX
r=1

�re
��rxur,

where

�i =
hh; yiiB
hyi; yiiB

, �r =
hh; uriB
�r

, �j = hh; zjiB and �j = hh;wjiB .

3. Statement of the problem and main results. We consider the non-linear
system

B
df

dx
+ Lf = S(f; f), (20)

where the solution tends to zero at in�nity, i.e.

f(x)! 0 as x!1; (21)

and
S (f; f) 2 N(L)?: (22)

The boundary conditions (21) correspond to the case when we have made the
expansion (13) around a Maxwellian M = M1, such that F !M1 as x!1.

We can (without loss of generality) assume that

B =
�
B+ 0
0 �B�

�
;

where

B+ = diag
�
�1

1 ; :::; �
1
n+

�
and B� = �diag

�
�1
n++1; :::; �

1
n

�
;

with �1
1 ; :::; �

1
n+ > 0 and �1

n++1; :::; �
1
n < 0. (23)

We also de�ne the projections R+ : Rn ! Rn+
and R� : Rn ! Rn� , n� = n� n+,

by, �
B N  [(�)]TJ/F7 6.97 4.884 -1.494 Td [1 � N R�u
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where C is a given n+ � n� matrix and h0 2 Rn+
. We introduce the operator

C : Rn ! Rn+
, given by

C = R+ � CR�.
We will also assume that the matrix C ful�lls one of the conditions

dim CU+ = m+,

with U+ = span (uj Lu = �Bu, with � > 0) = span (u1; :::; um+) , (25)

and

dim CX+ = n+, with X+ = span (u1; :::; um+ ; y1; :::; yk+ ; z1; ::::; zl) : (26)

Remark 3. For the continuous Boltzmann equation (with d = 3), if we have made
the expansion (13) around a non-drifting Maxwellian

M =
�1

(2�T1)3=2
e�j�j

2=2T1 ;

k+ = 1, l = 3 and the collision invariants y1, y2, z1, z2 and z3 can be chosen as, cf.
Ref. [21],

y1 =

 
�1

p
2T1

+
j�j2p
30T1

!
M1=2, y2 =

 
� �1

p
2T1

+
j�j2p
30T1

!
M1=2,

z1 =

 r
5
2
� j�j2p

10T1

!
M1=2, z2 =

�2

p
T1

M1=2 and z3 =
�3

p
T1

M1=2.

Moreover,
wj = L�1�1zj ,

in the continuous case, and the continuous analogue of equation Lu = �Bu is

Lh = ��1h, h = h(�), (27)

(see Ref. [16] for a discussion on the eigenvalue problem (27)). We also want
to point out that, in the continuous case, the boundary conditions (before the
expansion (13)), that correspond to conditions (24), are given by Eqs. (4).

We now state our main results.

Theorem 3.1. Let condition (26) be ful�lled and suppose that
hS (f(x); f(x)) ; wji = 0 for j = 1; :::; l, and that hh0; h0iB+

is su�ciently small.
Then with k+ + l conditions on h0, the system (20) with the boundary conditions
(21) and (24) has a locally unique solution.

Theorem 3.1 is proved in Section 5.

Theorem 3.2. Let condition (25) be ful�lled and assume that

h0; CexB
�1LB�1S(f(x); f(x)) 2 CU+ for all x 2 R+;

with U+ = span(u : Lu = �Bu, � > 0) = span (u1; :::; um+) . (28)

Then there is a positive number �0, such that if

jh0j � �0,

then the system (20) with the boundary conditions (21) and (24) has a locally unique
solution.

The proof of Theorem 3.2 is outlined in Section 6.
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Remark 4. If condition (25) is ful�lled, then the condition

h0 2 CU+.

implies that we have k+ + l conditions on h0.

Remark 5. If the conditions
CU� � CU+,

with U� = span (fuj Lu = �Bu, with � < 0g [ fz1; :::; zlg)
= span (um++1; :::; uq; z1; :::; zl) ;

(29)

and (22) are ful�lled, then

CexB
�1LB�1S(f; f) 2 CU+ for all x 2 R+.

Lemma 3.3. (see Ref. [7]) Let B+ and B� be the matrices de�ned in Eqs. (23).
Then
i) condition (26) is ful�lled, if

CTB+C < B� on R�X+;

ii) condition (25) is ful�lled, if

CTB+C � B� on R�U+.

Proof. ii) Let u 2 U+ and CTB+C � B� on R�U+. Then

hu; uiB > 0.

Furthermore, if u 6= 0 and Cu = 0, then

hu; uiB =


Cu�; Cu�

�
B+
�


u�; u�

�
B�

=


(CTB+C �B�)u�; u�

�
� 0.

Hence, if Cu = 0, then u = 0. That is, dim CU+ = dimU+ = m+, and part ii) of
the lemma is proved.

Part i) of the lemma is proved in a similar way (see also Ref. [7]).

Corollary 1. (see Ref. [7]) If C = 0, then the conditions (25) and
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where 8>>>>>>>><>>>>>>>>:

�i (x) = �i (0) e�x, i = 1; E86Td [(>)]TJ 0 -2.989 Td [(>)]TJ 0 -2.989 Td [(>)]TJ 0 -2.989 Td [(:)]TJ/F11 9.9626 1;E86Td [(>)]TJ 0 -2.989 Td [(>)]TJ 0 xTd [(>)]TJ 0 xTd [(>)]462.22.658 1>(0)ei
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and ������C�1C
qX

r=m++1

1Z
0

e��r

�e�r (f (�))� e�r (h (�))
�
d� ur

������
�
��C�1CP

�� ������
1Z

0

e���
qX

r=m++1

�e�r (f (�))� e�r (h (�))
�
P�1ur d�

������
�
��C�1CP

�� 1Z
0

e�3�� d�
��P�1B�1(S(f; f)� S(h; h))

��
2�

.

Hence, we obtain

j�(f)��(h)j�
=
��PP�1 (�(f)��(h))

��
�
� jP j

��P�1 (�(f)��(h))
��
�

� jP j sup
x�0

0@ 1Z
x

e(2x��)�

������P�1

qX
r=m++1

(e�r (f (�))� e�r (h (�)))ur

������ d�
+

xZ
0

e��

������P�1

0@m+X
r=1

(e�r (f (�))� e�r (h (�)))ur

+
lX

j=1

(e�j (f (�))� e�j (h (�)))zj

1A������ d�
1A

+

������P�1

0@m+X
r=1

(�r (f(0))� �r (h(0)))ur +
lX

j=1

(�j (f (0))� �j (h (0)))zj

+
k+X
i=1

(�i (f (0))� �i (h (0)))yi)

1A������
� jP j (sup

x�0

1Z
x

e(2x�3�)� d� +

1Z
0

e��� d� +
��P�1

�� ��C�1CP
�� 1Z

0

e�3�� d�)

�
��P�1B�1(S(f; f)� S(h; h))

��
2�

�K1 jS(f; f)� S(h; h)j2� , with K1 =
1

3�
jP j
���D�1 eP t��� �4 +

��P�1
�� ��C�1CP

��� .
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then the system (36) with the boundary conditions (21) and (24) has a unique solu-
tion f = f(x) in SR for a suitable chosen R.

Proof. By estimates (44) and (45), there is a positive number K such that

j�(f)j� = j�(f)��(0) + �(0)j� � K(jh0j+ jf j2�) (46)

if f 2 X .

Let R = 2K and let �0 be a positive number, such that �0 <
1
R2

. By estimates

(45) and (46)

j�(f)j� � (
1
2

+ 2K2 jh0j)R jh0j � R jh0j

and
j�(f)��(h)j� � 2KR jh0j jf � hj� � R

2�0 jf � hj� , R2�0 < 1,

if f; h 2 SR and jh0j � �0.
The theorem follows by the contraction mapping theorem (see Ref. [33, p.2]).

Theorem 5.4. Suppose that hS (f; f) ; wji = 0 for j = 1; :::; l. Then the solution
of Theorem 5.3 is a solution of the problem (20), (21) and (24) if and only if
P+

0 f(0) = 0.

Proof. The relations�
�i(f(x)) = �i(f(0))e�x; i = 1; :::; k+;
�j(f(x)) = �j(f(0))e�x; j = 1; :::; l;

are ful�lled if f(x) is a solution of Theorem 5.3 and hS (f; f) ; wji = 0. Hence,
P+

0 f(0) = 0 if and only if P+
0 f(x) � 0.

We denote by I the linear solution operator

I(h0) = f(0),

where f(x) is given by 8>><>>:
B
df

dx
+ Lf + P+

0 f = 0

Cf(0) = h0

f ! 0; as x!1

.

Similarly, we denote by I the nonlinear solution operator

I(h0) = f(0),

where f(x) is given by 8>><>>:
B
df

dx
+ Lf = S(f; f)� P+

0 f

Cf(0) = h0

f ! 0; as x!1

.

We assume that hS (f; f) ; wji = 0 for j = 1; :::; l. By Theorem 5.4, the solution
of Theorem 5.3 is a solution of the problem (20), (21) and (24) if and only if
P+

0 I(h0) � 0.
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Let

ri =
r0iq

hr0i; r0iiB+

;

with r0i = Cyi �
m+X
r=1

hCyi; CuriB+

hCur; CuriB+

Cur �
i�1X
j=1

hCyi; rjiB+
rj 6= 0, i = 1; :::; k+;

and

ri+k+ =
r0i+k+rD

r0i+k+ ; r0i+k+

E
B+

;

with r0i+k+ = Czi �
m+X
r=1

hCzi; CuriB+

hCur; CuriB+

Cur �
i+k+�1X
j=1

hCzi; rjiB+
rj 6= 0, i = 1; :::; l:

Then

P+
0 I � 0, h0 2 R?B+ ;

with R?B+ =
n
u 2 Rn

+
��� hu; riiB+

= 0 for i = 1; :::; k+ + l
o

and

I(h0) � eI(a1; :::; ak++l; h1);

with h0 =
k++lX
i=1

airi + h1, h1 2 R?B+ and ai = hh0; riiB+
.

Lemma 5.5. Suppose that P+
0 I(h0) � 0. Then h0 is a function of h1 if hh0; h0iB+

is su�ciently small.

Proof. It is obvious that I(0) = 0 and that we for the Fr�echet derivative of I(�h0)
have

d

d�
I(�h0)

����
�=0

= I(h0).

Then if h0 = ri

@

@ai

DeI(a1; :::; ak++l; h1); u
E
B

����
ai=0

=
d

d�
hI(�h0); uiB

����
�=0

= hI(h0); uiB 6= 0,

where u = yi if i = 1; :::; k+ and u = wi�k+ if i = k+ + 1; :::; k+ + l. By the implicit
function theorem,

DeI(a1; :::; ak++l; h1); y1

E
B

= 0 de�nes a1 = a1(a2; :::; ak++l; h1).
Induction gives that

a1 = a1(h1); :::; ak++l = ak++l(h1):

6. Direct approach without damping term. In this section we deal directly Tf 3.87
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with the boundary conditions (21) have (under the assumption that all necessary
integrals exist) the general solution

f(x) =
lX

j=1

�j (x) zj +
qX
r=1

�r (x)ur, (48)

where

�j (x) = �
1Z
x

e�j (�) d� , e�j (x) = hg (x) ; wji , j = 1; :::; l, (49)

and �1 (x) ; :::; �q (x) are given by Eq. (40). From the boundary conditions (24), we
obtain the system

C
m+X
r=1

�r (0)ur = h0 + C
1Z

0

qX
r=m++1

e��r e�r (�)ur +
lX

j=1

e�j (�) zj d�; (50)

with C = R+ � CR�.

The system (50) has (under the assumption that all necessary integrals exist) a
solution if we assume that

h0; CexB
�1LB�1g(x) 2 CU+ for all x 2 R+,

with U+ = span(u : Lu = �Bu, � > 0) = span (u1; :::; um+) (51)

and a unique solution if and only if, additionally, condition (25) is ful�lled.

Theorem 6.1. Assume that the conditions (25), (38) and (51)
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Lemma 7.1. Let g(x) 2 N(L)? and assume that

N(L) \N(B) = f0g .

Then the linear operators eLIm and eBIm on Im(B) have the following properties: eLIm

and eBIm are real symmetric operators, eLIm is semi-positive, eBIm is non-singular,
dim(N(eLIm)) = p, and the numbers k+, k� and l are the same for the system

eBIm
dP1f

eLIm))
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Denote e�(f) = �(P1f);

where � is the operator (43) when L and S(f; f) are replaced with eL and eS(f; f) =
P1(I � LP0 (P0LP0)�1

P0)S(f; f) in Eq. (36). We introduceb�(f) =
�
I � (P0LP0)�1

P0L
� e�(f) + (P0LP0)�1

P0S(f; f)

and denote
�min = min j�ij and �max = max j�ij ,

where �1; :::; �n�p are the non-zero eigenvalues of L. Then���b�(0)
���
�

=
����I � (P0LP0)�1

P0L
� e�(0)

���
�
� bK0 jh0j , with bK0 = (1 + ��1

min�max) eK,

and ���b�(f)� b�(g)
���
�

=
����I � (P0LP0)�1

P0L
��e�(f)� e�(g)

�
+ (P0LP0)�1

P0 (S(f; f)� S(g; g))
���
�

�(1 + ��1
min�max) eK(jf j� + jhj�) jf � hj� + ��1

minK2(jf j� + jhj�) jf � hj�
= bK1(jf j� + jhj�) jf � hj� , with bK1 = eK + ��1

min( eK�max +K2).

We can now extend our main results in Section 3 to yield also for singular operators
B.

8. Axially symmetric DVMs. In this section we consider only such symmetric
sets of velocities V, such that

if �i = (�1
i ; :::; �

d
i ) 2 V; then (��1

i ; :::;��di ) 2 V (54)

for any combinations of signs (see also Ref. [7]). We can, without loss of generality,
assume that

(�1
i+N ; �

2
i+N ; :::; �

d
i+N ) = (��1

i ; �
2
i ; :::; �

d
i ) and �1

i > 0;

for i = 1; :::; N , with n = 2
ij

�
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normal model with velocities (�1;�1;�1) and (3;�1; 1). The 24-velocity mod-
els, with velocities (�1;�1;�1), (�1;�3;�1) and (�3;�1;�1), and (�1;�1;�1),
(�1;�1;�3) and (�3;�1;�1), respectively, are DVMs with fewer velocities (earlier
in the "evolution"), that can be constructed from the same asymmetric model.

8.1. Explicit calculation of the characteristic numbers. We now assume that
(i) we have a symmetric set (54) of velocities; (ii) our DVM is normal; (iii) we have
made the expansion (13) around a non-drifting Maxwellian M , i.e. with b = 0 in
Eq. (12); and (iv)

B = diag(�1
1 ; :::; �

1
N ;��1

1 ; :::;��1
N ), with �1

1 ; :::; �
1
N > 0.

In this section we study, instead of Eq. (20), the equation

(B + uI)
df

dx
+ Lf = S(f; f), (55)

(cf. Eq. (3)). Note, however, that Eqs. (20) and (55) are never equivalent for
non-zero u, as Eqs. (2) and (3) are in the continuous case, for DVMs with a �nite
number of velocities.

The linearized collision operator L has the null-space

N(L) = span (�1; :::; �d+2) ,

where 8>><>>:
�1 = M1=2 � (1; :::; 1)
�2 = M1=2 � (�1

1 ; :::; �
1
N ;��1

1 ; :::;��1
N )

�3 = M1=2 � (j�1j2 ; :::; j�N j2 ; j�1j2 ; :::; j�N j2)
�i+2 = M1=2 � (�i1; :::; �iN ;��i1; :::;��iN ), i = 2; :::; d;

. (56)

Then the degenerate values of u, i.e. the values of u for which l � 1, are

u0 = 0 and u� = �

s
�1�2

4 + �2
2�5 � 2
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Remark 8. For the continuous Boltzmann equation (with d = 3) the numbers
�1; :::; �5 are given by

�1 = �, �2 = �T , �3 = 3�T , �4 = 5�T 2 and �5 = 15�T 2,

(where � and T denote the density and the temperature respectively), if we have
made the expansion (13) around a non-drifting Maxwellian

M =
�

(2�T )3=2
e�j�j

2=2T :

Therefore, for the Boltzmann equation (with d = 3) the degenerate values (57) are
(cf. Ref. [21])

u0 = 0 and u� = �
r

5T
3

.

Below we return to study Eq. (20).

8.2. Plane 12-velocity model. For d = 2 the equations (5) admit a class of
solutions satisfying

Fi = Fi0 if �1
i = �1

i0 and j�ij2 = j�i0 j2 . (58)

This reduces the number n of equations (5) to the number 2N < n of di�erent
combinations (�1

i ; j�ij
2) in the velocity set. However, the structure of the collision

terms (7) (in slightly di�erent notations) remains unchanged. We can, without loss
of generality, assume that

(�1
i+N ; j�i+N j

2) = (��1
i ; j�ij

2) and �1
i > 0

for i = 1; :::; N . Then, the Maxwellians are of the form

Mi = Aeb�
1
i +cj�ij2 = Mi+Ne

2b�1i , i = 1; :::; N;

for some constant A; b; c 2 R, with A > 0.
For the 12-velocity model in Example 3 (see Ref. [7]), the system (5) reduces by

reduction (58) to a system of the form8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

dF1

dx
= �1q1 + �2q2 + �3q3

dF2

dx
= �1q1 � �2q2 + �4q4

3
dF3

dx
= � (�1q1 + �4q4)

�dF4

dx
= � (�1q1 + �2q2 + �3q3)

�dF5

1 + dx
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where s = e4c and K = Ae2c, c and A are constant, with A > 0. The null-space of
L is given by

N(L) = span (�1; �2; �3) ,

where 8<:
�1 = K1=2 (1; s; s; 1; s; s)
�2 = K1=2 (1; s; 3s;�1;�s;�3s)
�3 = 2K1=2 (1; 5s; 5s; 1; 5s; 5s)

and

B = diag(1; 1; 3;�1;�1;�3).

A typical choice of �1; �2; �3; �4 (cf. Refs. [15] and [23]) is

8<:
�1 = �3 = 2S
�2 = S(

p
2 +
p

5)
�4 = S

p
10;

.

Therefore, we assume below that �1 = �3; �2; �4 > 0. Then

L =

0BBBBBB@
(2�1 + �2) s2 (�1 � �2) s ��1s
(�1 � �2) s �1 + �2 + �4s

2 �
�
�1 + �4s

2
�

��1s �
�
�1 + �4s

2
�

�1 + �4s
2

� (2�1 + �2) s2 (�2 � �1) s �1s
(�2 � �1)s ��2 + �4s

2 ��4s
2

�1s ��4s
2 �4s

2

� (2�1 + �2) s2 (�2 � �1)s �1s
(�2 � �1) s ��2 + �4s

2 ��4s
2

�1s ��4s
2 �4s

2

(2�1 + �2) s2 (�1 � �2) s ��1s
(�1 � �2) s �1 + �2 + �4s

2 �(�1 + �4s
2)

��1s �(�1 + �4s
2) �1 + �4s

2

1CCCCCCA
and

S(f; f) =

0BBBBBB@
s�1(q1 + q3) + s�2q2 224s

2
2q1 + q2

12

q4s
12
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then

y1; y2; z 2 N(L); Lw = Bz,

hy1; y2iB = hz; ziB = hw;wiB = hz; yiiB = hw; yiiB = 0 for i = 1; 2,

hy1; y1iB = �hy2; y2iB = 16 and hz; wiB =
18
�1

+
16
�2
:

Furthermore, if�
u1 =

p
2eu1 + [2

p
2�1 �

p
(8�1 + 9�2) (�1 + 2�4s2)]eu2

u2 =
p

2eu1 + [2
p

2�1 +
p

(8�1 + 9�2) (�1 + 2�4s2)]eu2
, with

eu1 = (3s(3�2 � 4�1);�3(4�1 + 3�2); 4�1; 3s(3�2 � 4�1);�9�2; 0) andeu2 = (0; 3;�1; 0;�3; 1) ,

then

Lui = �iBui for i = 1; 2, with �1 = ��2 =

p
2 (8�1 + 9�2) (�1 + 2�4s2)

3
,

hu1; u2iB = hui; ziB = hui; wiB = hui; yjiB = 0 for i; j = 1; 2, and

hu1; u1iB = �hu2; u2iB = 12 (8�1 + 9�2)
p

2 (8�1 + 9�2) (�1 + 2�4s2).

We have that

(R+ �R�)u1 = �2
p

(8�1 + 9�2) (�1 + 2�4s2)R+eu2 = � (R+ �R�)u2 and

(R+ �R�) z = 0

and so Theorem 3.2 is applicable for C = diag(1; 1; 1) (C = the identity operator)
and h0 2 span((0; 3;�1)) su�ciently small (cf. Refs. [2] and [26]).

8.3. More general axially symmetric DVMs. Now, additionally to assump-
tions (i)-(iv) above, we assume that (v) the coe�cients �klij in Eq. (7) satisfy the
additional symmetric conditions

�klij = ��(k)�(l)
�(i)�(j) ,

where �(i) =
�
i+N , if 1 � i � N ,
i�N , if N + 1 � i � 2N , .

Then L =
�
L1 L2

L2 L1

�
, where L1 and L2 are two N �N matrices (cf. Refs. [2],

[3], [4] and [7]). We choose 8<: ’1 = �2 + �3

’2 = �2 � �3

’3 = �4�1 � �2�3

.

where �2 = h�2; �2i, �4 = h�2; �3iB and �1; �2; �3 are given in Eq. (56). Then

K = 2�2

0@ 1 0 0
0 �1 0
0 0 0

1A ;

where K = (h’i; ’jiB). Hence, k+ = k� = 1 and l = d, since �4; :::; �d+2 are
all orthogonal, with respect to the scalar product h�; �iB , to �1; �2 and �3. Since
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B�1L

�
u+

u�

�
= �

�
u+

u�

�
, with u+; u� 2 RN , implies that B�1L

�
u�

u+

�
=

��
�
u�

u+

�
, we obtain (cf. Refs. [2], [3], [4] and [7]) that the non-negative eigenva-

lues of B�1L are ��1; :::;��N�l�1; where �i > 0, with corresponding eigenvectors
u�1 ; :::; u

�
N�l�1, where R+u

�
i = R�u

+
i and R�u

�
i = R+u

+
i .

Therefore, the Jordan normal form of B�1L for d = 3 is (the number of blocks
0 1
0 0 is equal to the dimension d, that is, in this case 3)0BBBBBBBBBBBBBBBBBBBBBBBB@

�1

. . .
�m+

��1

. . .
��m+

0
0

0 1
0 0

0 1
0 0

0 1
0 0

1CCCCCCCCCCCCCCCCCCCCCCCCA

:

If C = diag(1; :::; 1), i.e. if C is the identity operator, and
h0 2 (R+�R�)span

�
u+

1 ; :::; u
+
N�l�1

�
, then the conditions (25) and (28) are ful�lled

(see Remark 5).
Under the assumptions (i)-(v) given above, the following theorem (see Ref. [26]

for the case of the continuous Boltzmann Equation) follows by Theorem 3.2.

Theorem 8.1. Let h0 2 (R+ � R�)U+, where U+ = span
�
u+

1 ; :::; u
+
N�l�1

�
. Then

there is a positive number �0, such that if

jh0j � �0,

then the system (20) with the boundary conditions

f(x)! 0, as x!1, and (R+ �R�)f (0) = h0,

has a locally unique solution f = f(x).

Remark 9. The same problem, for d = 2, is also studied by Babovsky in Ref. [2],
but then under the quite restrictive condition hS(f; f); wii = 0 for i = 1; 2 (in our
notations).

Acknowledgments. I thank my former advisor professor Alexander Bobylev for
introducing me to this problem and giving me part of his great ideas and knowledge.
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