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gases A and B reads8>><>>:
@fAi
@t

+ �Ai � rxf
A
i = QAAi (fA; fA) +QBAi (fB ; fA), i = 1; :::; nA,

@fBj
@t

+ �Bj � rxf
B
j = QABj (fA; fB) +QBBj (fB ; fB), j = 1; :::; nB

(1)

where V� =
�
��1 ; :::; �

�
nα

	
� Rd, �; � 2 fA;Bg are �nite sets of velocities, f�i =

f�i (x; t) = f�(x; t; ��i ) for i = 1; :::; n�, and f�
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and by the relations (2), with h =
�
hA; hB

�
,

hh;Q (f; g)i =

=
1
8

nAX
i;j;k;l=1

�klij (A;A)
�
hAi + hAj � hAk � hAl

� �
fAk g

A
l + gAk f

A
l � fAi gAj � gAi fAj

�
+

1
4

nAX
i;k=1

nBX
j;l=1

�klij (B;A)
�
hAi + hBj � hAk � hBl

� �
fAk g

B
l + gAk f

B
l � fAi gBj � gAi fBj

�
+

1
8

nBX
i;j;k;l=1

�klij (B;B)
�
hBi + hBj � hBk � hBl

� �
fBk g

B
l + gBk f

B
l � fBi gBj � gBi fBj

�
.

(3)

A vector � =
�
�A; �B

�
is a collision invariant if and only if

��i + ��j = ��k + ��l , (4)

for all indices 1 � i; k � n�, 1 � j; l � n� and �; � 2 fA;Bg, such that �klij (�; �) 6=
0. By the relation (3)

h�;Q (f; f)i =
1
4

nAX
i;j;k;l=1

�klij (A;A)
�
�Ai + �Aj � �Ak � �Al

� �
fAk f

A
l � fAi fAj

�
+

1
2

nAX
i;k=1

nBX
j;l=1

�klij (B;A)
�
�Ai + �Bj � �Ak � �Bl

� �
fAk f

B
l � fAi fBj

�
+

1
4

nBX
i;j;k;l=1

�klij (B;B)
�
�Bi + �Bj � �Bk � �Bl

� �
fBk f

B
l � fBi fBj

�
. (5)

which is zero, independently of our choice of non-negative vector f (f�i � 0 for all
1 � i � n�), if and only if � is a collision invariant.

We consider below (even if this restriction is not necessary in our general reason-
ing) only DVMs, such that any collision invariant is of the form

� =
�
�A; �B

�
, with �� = ��(�) = a� +m�b � � + cm� j�j2 , (6)

for some constant aA; aB ; c 2 R and b 2 Rd. In this case the equation

h�;Q (f; f)i = 0

has the general solution (6). Discussions on constructions of DVMs for binary
mixtures can be found in e.g. [11],[12],[20],[21],[14] and [15].

A binary Maxwellian distribution (or just a bi-Maxwellian) is a function M =�
MA;MB

�
, such that

Q(M;M) = 0 and M�
i � 0 for all 1 � i � n�.

All bi-Maxwellians are of the form

M = e�, i.e. M =
�
MA;MB

�
, with M� = e�

α

= eaα+mαb��+cmαj�j2 , (7)

where � =
�
�A; �B

�
is given by Eq.(6). Assuming that f is non-negative, we let
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� = log f in Eq.(5) and obtain that

hlog f;Q (f; f)i =
1
4

nAX
i;j;k;l=1

�klij (A;A)
�
fAk f

A
l � fAi fAj

�
log

fAi f
A
j

fAk f
A
l

+
1
2

nAX
i;k=1

nBX
j;l=1

�klij (B;A)
�
fAk f

B
l � fAi fBj

�
log

fAi f
B
j

fAk f
B
l

+
1
4

nBX
i;j;k;l=1

�klij (B;B)
�
fBk f

B
l � fBi fBj

�
log

fBi f
B
j

fBk f
B
l

� 0,

with equality if and only if
f�k f

�
l = f�i f

�
j

for all indices 1 � i; k � n�, 1 � j; l � n� and �; � 2 fA;Bg, such that �klij (�; �) 6=
0, or equivalently, if and only if f is a bi-Maxwellian. Hence, f is a bi-Maxwellian
if and only if log f is a collision invariant.

For a bi-Maxwellian M =
�
MA;MB

�
, we obtain, by denoting

f = M +
p
Mh, (8)

in Eq.(1), the system
@h

@t
+ � � rxh = �Lh+ S (h) ,

where ��rxh = (�A1 �rxh
A
1 ; :::; �

A
nA �rxh

A
nA ; �

B
1 �rxh

B
1 ; :::; �

B
nB �rxh

B
nB ). Furthermore,

L is the linearized collision operator (n� n matrix, with n = nA + nB) given by

Lh = � 2p
M
Q(M;

p
Mh), (9)

and the quadratic part S is given by

S (h; h) =
1p
M
Q(
p
Mh;

p
Mh). (10)

By Eq.(3) and the relations
1
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Hence, the matrix L is symmetric, i.e.

hg; Lhi = hLg; hi
for all g and h, and semi-positive, i.e.

hh; Lhi � 0

for all h. Also hh; Lhi = 0 if and only ifp
M�
k h

�
l +

q
M�
l h

�
k =

p
M�
i h

�
j +

q
M�
j h

�
i (11)

for all indices 1 � i; k � n�, 1 � j; l � n� , and �; � 2 fA;Bg, satisfying �klij (�; �) 6=
0. We let h =

p
M� in Eq.(11), and obtain Eq.(4), by the relations M�

i M
�
j =

M�
kM

�
l 6= 0. Hence,

Lh = 0 if and only if h =
p
M�,

where � is a collision invariant. In consequence,D
S (h; h) ;

p
M�

E
= hQ (f; f) ; �i+

D
h; L
p
M�

E
= 0

for all collision invariants �.
In the planar stationary case our system for mixtures reads

D
dh

dx
+ Lh = S(h; h), x 2 R,

where D =
�
DA 0
0 DB

�
, with D� = diag(��;11 ; :::; ��;1nα ), and the operators L and

S are given by Eqs.(9)-(10).
We consider below the case when D is non-singular, i.e. when all ��;1i 6= 0 are

non-zero. For the case of singular matrices D, see Remark 5 below.
We denote by n�, where n+ + n� = n, and m�, with m+ + m� = q, the

numbers of positive and negative eigenvalues (counted with multiplicity) of the
matrices D and D�1L respectively, and by m0 the number of zero eigenvalues of
D�1L. Moreover, we denote by k+, k�, and l, with k+ + k� = k, where k + l = p,
the numbers of=
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We also de�ne the projections R+ : Rn ! Rn+
and R� : Rn ! Rn�

, n� = n� n+,
by

R+s = s+ =
�
s1; :::; sn+

A
; snA+1; :::; snA+n+

B

�
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(iv) Assume that the condition (19) is ful�lled. Then the system (12) with the
boundary conditions (Q) and (16) has a unique solution with the asymptotic 
ow
(21) if the k�+l parameters �k++1; :::; �k and #1; :::; #l, #i = �i+�i, are prescribed.

Especially, for the homogeneous system (12) with g = 0, the condition (20) is
reduced to

h0 2 CU+.

Lemma 3.2. Let D+ =
�
D+
A 0

0 D+
B

�
and D� =

�
D�A 0
0 D�B

�
, cf. Eq.(15).

Then
i) the condition (18) is ful�lled, if

CTD+C < D� on R�X+;

ii) the conditions (17) and (19) are ful�lled, if

CTD+C � D� on R�U+ and R� eX+, respectively.

Corollary 1. If C = 0, then the conditions (17)-(19) are ful�lled.
In particular,

�
u+

1 ; :::; u
+
m+ ; y

+
1 ; :::; y

+
k+ ; z

+
1 ; :::; z

+
l

	
is a basis of Rn+

.

We consider the non-linear system

D
df
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Theorem 3.4. Let condition (17) be ful�lled and assume that

h0; CexB
�1LD�1S(f(x); f(x)) 2 CU+ for all x 2 R+,

with U+ = span(u : Lu = �Du, � > 0) = span (u1; :::; um+) .

Then there is a positive number �0, such that if

jh0j � �0,

then the system (22) with the boundary conditions (O),(16), has a locally unique
solution (with respect to the norm j�j�).

Remark 3. If condition (17) is ful�lled, then the condition

h0 2 CU+

implies that we have k+ + l conditions on h0.

Remark 4. If the conditions
CU� � CU+, (24)

with U� = span (fuj Lu = �Du, with � < 0g [ fz1; :::; zlg)
= span (um++1; :::; uq; z1; :::; zl) ;

and (13) are ful�lled, then

CexD
�1LD�1S(f; f) 2 CU+ for all x 2 R+.

Remark 5. All our results for half-space problems can be extended in a natural
way, to yield also for singular matrices D, if

N(L) \N(D) = f0g .

4. Applications to shock pro�les. We are interested in solutions to the problem

(D � cI)
dFi
dy

= Qi (F; F ) , i = 1; :::; n, c 2 R, (25)

such that
F !M� as y ! �1,

where M� are two bi-Maxwellians and D =
�
DA 0
0 DB

�
, with D� from Eqs.(14)-

(15). Here F = (F1; :::; Fn), with Fi = Fi (y) = F (y; �i), i = 1; :::; n.
Note that shifting the velocity variable in the continuous Boltzmann equation

doesn’t change the velocity set, while for a �nite set of velocities a shift in the
velocity variable changes the set of velocities. However, if we want to end up with
a speci�c set of velocities after a given shift in the velocity variable, we can always
start with a suitably shifted set of velocities. Note also that changing c in the
discrete case can change the number of positive (and negative) eigenvalues of the
matrix D � cI, and thereby the number of positive (and negative) eigenvalues of
the matrix (D � cI)�1L can change also away from the degenerate values of c.

We denote by f�1; :::; �pg (p = d + 3 for normal DVMs for binary mixtures) a
basis for the vector space of collision invariants. If we multiply Eq.(25) scalarly by
�i, 1 � i � p, and integrate over R, then we obtain that the bi-Maxwellians M�
and M+ must ful�ll the Rankine-Hugoniot conditions

hM+; �iiD�cI = hM�; �iiD�cI , i = 1; :::; p.

We make the following assumptions on our DVMs.
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1. There is a number c0 ("speed of sound"), with the following properties:
[i] rank(K) = p� 1, where K is the p� p matrix with the elements

kij = hM+�i; �jiD�c0I
.

The rank of K is independent of the choice of the basis f�1; :::; �pg. In other
words, there is a unique (up to its sign) vector �
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Then,

K =

0BBBBBBBBB@

�c�A1 0 �A2 �c�A3
0 �c�B1 �B2 �c�B3
�A2 �B2 �c�2 �4

�c�A3 �c�B3 �4 �c�5

�c�6

. . .
�c�d+4

1CCCCCCCCCA
;

where K = (h�i+1; �j+1iD�cI), �
A
1 = h�0; �0i, �A2 = h�0; �2iD, �A3 = h�0; �3i,

�B1 = h�1; �1i, �B2 = h�1; �2iD, �B3 = h�1; �3i, �2 = �A2 + �B2 = h�2; �2i, �4 =
h�2; �3iD and �i+2 = h�i; �ii, i = 3; :::; d+ 2. Hence,

det(K)

= cd�6:::�d+4(c2(�A1 �
B
1 �2�5 � �A1 �2(�B3 )2 � �B1 �2(�A3 )2) + (�A2 �

B
3 � �B2 �A3 )2

+ 2�4(�A1 �
B
2 �

B
3 + �B1 �

A
2 �

A
3 )� (�A1 (�B2 )2 + �B1 (�A2 )2)�5 � �A1 �B1 �2

4),

and the degenerate values of c (the values of c for which l � 1) are

c0 = 0 and c� = �

s
X

�2(�A1 �
B
1 �5 � �A1 (�B3 )2 � �B1 (�A3 )2)

, where

X = �A1 �
B
1 �

2
4 + (�A111(�A(
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with

L = s

0BBBBBBB@

l1 �l1 ��1

p
b �1

p
b ��2

p
d �2

p
d

�l1 l1 �1

p
b ��1

p
b �2

p
d ��2

p
d

��1

p
b �1

p
b l2 �l2 ��2

p
bd �2

p
bd

�1

p
b ��1

p
b �l2 l2 �2

p
bd ��2

p
bd

��2

p
d �2

p
d ��2

p
bd �2

p
bd �2 (1 + b) ��2 (1 + b)

�2

p
d ��2

p
d �2

p
bd ��2

p
bd ��2 (1 + b) �2 (1 + b)

1CCCCCCCA
;

where l1 = �1b+ �2d and l2 = �1 + �2d, and

S(h; h) =
p
s(�1q1(

p
b;�
p
b;�1; 1; 0; 0) + �2q2(

p
d;�
p
d; 0; 0;�1; 1)

+�2q3(0; 0;
p
d;�
p
d;�
p
b;
p
b)).

The linearized operator L is symmetric and semi-positive and has the null-space

N(L) = span(y1; y2; y3; ey4), with
y1 = (1; 1; 0; 0; 0; 0); y2 = (0; 0; 1; 1; 0; 0);

y3 = (0; 0; 0; 0; 1; 1); and ey4 = (1;�1;
p
b;�
p
b;
p
d;�
p
d)

where we for c 6= 0 can replace ey4 with

y4 =
�

1 + c; 1� c;
p
b (1 + c) ;

p
b (1� c) ;

p
d (m+ c) ;

p
d (m� c)

�
:

Then we obtain

K =

0BB@
�2c 0 0 0

0 �2c 0 0
0 0 �2c 0
0 0 0 2c

��
8 9.9626 Tf 6.846 0 Td [(()]TJ/F11 9.9626 Tf 3.874 0 Td [(m)]TJ/F8 .9626 Tf 3.874 0  [(0)]TJ -a
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with the corresponding eigenvectors8>><>>:
u1 = (

p
b

1� c
;

p
b

1 + c
;� 1

1� c
;� 1

1 + c
; 0; 0)

u2 = (

p
d

1� c
;

p
d

1 + c
;

p
bd

1� c
;

p
bd

1 + c
;� 1 + b

m� c
;� 1 + b

m+ c
)

.

Plugging h = �u1 + �u2 in Eq.(28) and multiplying scalarly by (D � cI)ui, we
obtain the two equations 8>><>>:

d�

dy
+ �1� = k��

d�

dy
+ �2� = k�2

,

with k =
2�2

p
sdc (1 + b) (m� 1)

(1� c2) (m2 � c2)
. The solutions are

8><>:
� =

�2

k + C1e�2y

� =
C2e

��1y

ke��2y + C1
=
C2e

(�2��1)y

k + C1e�2y

or
�
� = 0
� = C2e

��1y .

The parameter C1 6= 0 re
ects the invariance of our equation under shifts in the
invariant variable y. The sign of C1 is, however, de�ned uniquely. It must be the
same as the sign of k.

Let c+ < c < m or c� < c < �1 + b+ dm

1 + b+ d
. If c+ < c < m, then �2 > 0 and

�1 < 0, and hence, lim
y!1

� = 0 implies that C2
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with
1 + b+ dm2

1 + b+ d
< c < c+ or �m < c < c�; and in a similar way as above, we

obtain

f(y) = M� +
�2

k + C1e�2y
M

1=2
� u2

and

M+ = M� +
�2

k
M

1=2
� u2.

7. Boundary layers for the 6+4-velocity model with a moving wall. Let
c be a real number such that c =2 f�m;�1; 0; 1;mg. We assume that m > 1. The
cases m < 1 and m = 1 can be studied in a similar way. We de�ne the projections
R+ : R6 ! Rn+

, n+ = n+
A + n+

B , and R� : R6 ! Rn�
, n� = 6� n+, by

R+s = s+ and R�s = s�, where

s+ =

8>>>>><>>>>>:

�
s5 if 1 < c < m

(s1; s3; s5) if � 1 < c < 1 < c < m
(n Let



DISCRETE BOLTZMANN EQUATION FOR MIXTURES 17

If h0 = 0, then we always have the trivial solution f = 0; and if �1
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We see that the number of conditions on h0, in fact, equals k+ + l, where k+ and
l can be found in table 29.
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