

Keywords: Boltzmann equation, boundary layers, discrete velocity models, half-space problem, non-condensable gas PACS: 51.10.+y, 05.20.Dd

INTRODUCTION

Half-space problems for the Boltzmann equation are important in the study of the asymptotic behavior of the solutions of boundary value problems of the Boltzmann equation for small Knudsen numbers [1, 2]. For single-component gases half-space problems are well-studied mathematically both for the continuous Boltzmann equation as well as the discrete Boltzmann equation, see [3, 4, 5] and references therein. In the present paper we present some of our results for the discrete Boltzmann equation for binary mixtures, recently obtained in [6] and [7]. We do consider the case of a binary mixture of two vapors, but our main objective is the case of a condensing vapor in the presence of a non-condensable gas, cf. [8], for which the main result is presented in Theorem 2. In the latter case we also present explicit solutions and solvability conditions for a reduced 6+4-velocity model in the case of a ow symmetric around thex-axis [7]. We start by reviewing some general properties for the planar stationary discrete Boltzmann equation for binary mixtures.

The planar stationary discrete Boltzmann equation for a binary mixture of the Agasset B reads [6]

$$\frac{1}{dx} = Q_i^{AA}(F^A;F^A) + Q_i^{BA}(F^B;F^A), i = 1;...;n_A,$$

$$x_j^{B;1} \frac{dF_j^B}{dx} = Q_j^{AB}(F^A;F^B) + Q_j^{BB}(F^B;F^B), j = 1;...;n_B,$$
(1)

where $V_a = x_1^a$; ...; $x_{n_a}^a = R^d$, a; b 2 f A; Bg, are nite sets of velocities $F_i^a = F_i^a(x) = F^a(x; x_i^a)$ for i = 1; ...; n_a , and $F^a = F^a(x; x)$ represents the microscopic density of particles (of the again with velocity x at position x 2 R.

We denote by m_a the mass of a molecule of gas Here and below, b 2 f A; Bg. For a function $g^a = g^a(x)$ (possibly depending on more variables the), we will identify g^a with its restrictions to the set V^a

BINARY MIXTURES OF TWO VAPORS

In this section we consider the case of a binary mixture of two vapors [6] (and as a particular case the case of a single vapor [5]), to give the possibility to compare with the results for the case of a condensing vapor with a non-condensable gas present [7], presented in the next section. We assume that our DVMs are normal considered as binary mixtures. It is also preferable that the DVMs for the gases and B are normal, even if this doesn't affect our results. For a bi-Maxwellian $M = M^A; M^B$, we obtain, by substitutin $\overline{g} = M + \frac{M}{M}f$ in Eq.(4), the system

. .

$$D\frac{df}{dx} + Lf = S(f; f), \qquad (5)$$

where the linearized operatbris a symmetric and semi-positive matrix, with the null-space

$$\begin{split} N(L) &= \text{ span}(R_A M^{1=2}; R_B M^{1=2}; M^{1=2} x^1; ...; M^{1=2} x^d; M^{1=2} j x j^2), \text{ where} \\ R_A h &= (h_1; ...; h_{n_A}; 0; ...; 0) \text{ and } R_B h = (1 R_A) h \text{ if } h 2 R^n, \text{ with } n = n_A + n_B, \end{split}$$

and the quadratic $pa\mathbf{B}(f; f)$ belong to the orthogonal complement $\mathbf{M}(L)$ [6].

At the far end we assume that

f(x 0g 9.9626 Tf0

CONDENSING VAPOR FLOW IN THE PRESENCE OF A NON-CONDENSABLE GAS

In this section we study distribution $\bar{\mbox{s}},$ such that $F \ ! \ M^A; 0$

For a condensing vapor ow (i.e. witb < 0, whereb is the rst component ob in Eq.(2)), we have $k_B = 1$. Moreover, under conditio(11), $k_B = 1$ and $k_B^+ = I_B = 0$. However, it is enough for us that $I_B = 0$, i.e. that

$$k_{\rm B} = p_{\rm B}: \tag{14}$$

Conjecture 1 For a normal DVM (for gas A) ful lling the symmetry relation(\mathfrak{S}) there is a critical number $\mathfrak{p} > 0$, such that

	b < b+	b = b ₊	b ₊ < b < 0	b = 0	0 < b < b+	b = b+	b ₊ < b
k _A +	0	0	1	1	d+ 1	d+ 1	d+ 2
I _A	0	1	0	d	0	1	0

Conjecture 1 is true for the continuous Boltzmann equation [12], where the speed of sound. We assume that we have a DVM that restricted to gasful IIs Conjecture 1, at least in the case of condensation, i.ebfor0. The number b_+ has been calculated for a plane axially symmetric 12-velocity model (assuming that the solution is symmetric with respect to the axis) in [7].

By condition(14), dim(sparf u: $L_{AB}u = I D_Bu; I > 0g) = n_B^+$, see [13, 11, 7]. We assume that

dim spart
$$U_B^+ = n_B^+$$
 1, where $U_B^+ = R_+^B C R^B u : L_{AB}u = I D_B u; I > 0$, (16)

but, also that

dim spart
$$\boldsymbol{\theta}_{B}^{+} = n_{B}^{+}$$
, where $\boldsymbol{\theta}_{B}^{+} = U_{B}^{+} \begin{bmatrix} n \\ R_{+}^{B} \end{bmatrix} C R^{B} \begin{bmatrix} p \\ \overline{M}^{B} \end{bmatrix} C R^{B}$ (17)

If we would have had dimspatU_B⁺ = n_B^+ , then $f^B(x) = 0$, i.e. the non-condensable gas would have been absent. For $b_+ < b < 0$ we will also assume that

$$R_{+}^{A} \stackrel{\sim}{\longrightarrow} \overline{M^{A}} \ge R_{+}^{A} \operatorname{sparb}_{A}^{+}, \text{ with } U_{A}^{+} = f u : L_{AA} u = I D_{A} u, I > 0g;$$
(18)

or, equivalently, since di(\mathbb{R}^{A}_{+} sparb \mathbb{Q}^{+}_{A}) = n^{+}_{A} 1 by Eq(15) [13, 11, 7],

dim
$$(R_{+}^{A}$$
spart $\theta_{A}^{+}) = n_{A}^{+}$, with $\theta_{A}^{+} = U_{A}^{+}$ [$\frac{\Pi p}{M^{A}}$

In fact, we can replace M^A in assumption(18) by any possible vector 2 N(L_{AA}), such that

$$L_{BA}f^{B};y = S_{BA}(f^{B};f^{A});y = 0.$$

We x e = minfj h_0 ; 1g and the total mass of the gBs bem^{tot}_B, i.e.

$$\operatorname{em}_{B} \overset{n_{B}}{\overset{Z^{4}}{a}}_{i=1}^{p} \overline{M^{B}} f_{i}^{B}(x) \, dx = m_{B}^{tot}, \tag{19}$$

for a given positive constamt^{tot}_B. The case $m_B^{tot} = 0$, corresponds to the case of single 1 Td-(v)15(en)-s96267626 Tf 6.2d [(+

A REDUCED 6+4 - VELOCITY MODEL

In this section we present an exact solution and solvability condition (see [7] for a complete presentation) when the vapor, gasA, is modeled by a six-velocity model with velocities

 $x_1^A = (1; 0)$

 $I^{B} = \frac{s^{A}}{m}(s_{2} + s_{3}q)(p \quad 1) > 0 \text{ and } u^{B} = (p \ \overline{p}; 1);$

respectively.

The new boundary conditions become

$$f_{1}^{A}(0); f_{2}^{A}(0) = p \frac{1}{\overline{s^{A}q}} \,^{p} \overline{q}(s_{0}^{A} \, s^{A}); s_{0}^{A}q_{0} \, s^{A}q \, \text{and} \, f_{1}^{B}(0) = \,^{p} \overline{p} \, f_{2}^{B}(0)$$
(22)

at the condensed phase, and at the far end

$$f^{A}$$
! 0 and f^{B} ! 0 asx! ¥. (23)

We decompose

$$f^{A} = m_{1}^{A}y_{1}^{A} + m_{2}^{A}y_{2}^{A} + m_{3}^{A}y_{2}$$

and

total amount of the ga**B**, or on the closeness of the far Maxwellian and the Maxwellian at the wall for th**A** gas obtain a solution. However, smallness assumptions might be needed to obtain positivity of the solution. For the case of a condensing vapor ow (symmetric aroundxthe