
Boundary Layers forrsthe discrete Boltzmann equation �r4zmann equationare distributed according to a given distribution. The conditions, on the given distribution at the condensed phase, needed forthe existence of a unique solution of the problem are investigated, assuming that the given distribution at the condensed phaseis suf�ciently close to the Maxwellian at in�nity and that the total mass of the non-condensable gas is suf�ciently small. Exactsolutions and solvability conditions are found for a speci�c simpli�ed discrete velocity model (with few velocities).
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INTRODUCTION

Half-space problems for the Boltzmann equation are important in the study of the asymptotic behavior of the solutions
of boundary value problems of the Boltzmann equation for small Knudsen numbers [1, 2]. For single-component
gases half-space problems are well-studied mathematically both for the continuous Boltzmann equation as well as
the discrete Boltzmann equation, see [3, 4, 5] and references therein. In the present paper we present some of our
results for the discrete Boltzmann equation for binary mixtures, recently obtained in [6] and [7]. We do consider the
case of a binary mixture of two vapors, but our main objective is the case of a condensing vapor in the presence of a
non-condensable gas, cf. [8] , for which the main result is presented in Theorem 2. In the latter case we also present
explicit solutions and solvability conditions for a reduced 6+4-velocity model in the case of a �ow symmetric around
thex-axis [7]. We start by reviewing some general properties for the planar stationary discrete Boltzmann equation for
binary mixtures.

The planar stationary discrete Boltzmann equation for a binary mixture of the gasesA andB reads [6]
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andFa = Fa (x;x ) represents the microscopic density of particles (of the gasa ) with velocity x at positionx 2 R.



We denote byma the mass of a molecule of gasa . Here and below,a ;b 2 f A;Bg.
For a functionga = ga (x ) (possibly depending on more variables thanx), we will identify ga with its restrictions

to the setVa



BINARY MIXTURES OF TWO VAPORS

In this section we consider the case of a binary mixture of two vapors [6] (and as a particular case the case of a single
vapor [5]), to give the possibility to compare with the results for the case of a condensing vapor with a non-condensable
gas present [7], presented in the next section. We assume that our DVMs are normal considered as binary mixtures. It
is also preferable that the DVMs for the gasesA andB are normal, even if this doesn't affect our results.

For a bi-MaxwellianM =
�
MA;MB

�
, we obtain, by substitutingF = M +

p
M f in Eq.(4), the system
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+ L f = S( f ; f ) , (5)

where the linearized operatorL is a symmetric and semi-positive matrix, with the null-space

N(L) = span(RAM1=2;RBM1=2;M1=2x1; :::;M1=2xd;M1=2 jx j2), where

RAh = ( h1; :::;hnA;0; :::;0) andRBh = ( 1� RA) h if h 2 Rn, with n = nA + nB,

and the quadratic partS( f ; f ) belong to the orthogonal complement ofN(L) [6].
At the far end we assume that
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CONDENSING VAPOR FLOW IN THE PRESENCE OF A NON-CONDENSABLE GAS

In this section we study distributionsF, such thatF !
�
MA;0
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A REDUCED 6+4 - VELOCITY MODEL

In this section we present an exact solution and solvability condition (see [7] for a complete presentation) when the
vapor, gasA, is modeled by a six-velocity model with velocities
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The new boundary conditions become
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at the condensed phase, and at the far end

f A ! 0 andf B ! 0 asx ! ¥. (23)
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total amount of the gasB, or on the closeness of the far Maxwellian and the Maxwellian at the wall for the gasA to
obtain a solution. However, smallness assumptions might be needed to obtain positivity of the solution.

For the case of a condensing vapor �ow (symmetric around thex


