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for bosons, and � = 1, corresponding to the discrete Nordheim-Boltzmann equation for fermions. Unlike for the
intermediate cases, in the limiting cases for bosons and fermions, the three dimensional case d = 3 is highly relevant



The inequality (6) is obtained by using the relation
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y
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with equality if and only if y = z, which is valid for all y; z ∈ R+. Hence, we have equality in the inequality (6) if and
only if
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for all indices such that �



H-THEOREM AND TREND TO EQUILIBRIUM

We define anH-function

H[F] = H[F](x) =

NX
i=1

p1
i �(Fi(x));

where, cf. [8],

�(y) =
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1
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1
�

: (12)

For the planar stationary system

B
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N), x ∈ R+, (13)

we obtain anH-theorem
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with equality if, and only if, F is an equilibrium distribution. We introduce the moments8>>>><>>>>:
j1 = 〈B1; F〉
ji+1 =

D
Bpi; F

E
, i = 1; :::; d

jd+2 =
D
B |p|2 ; F

E , 1 = (1; :::; 1) ∈ RN : (14)

By applying relation (10) for the system (13), one obtain that j1; :::; jd+2 are independent of x in the planar stationary
case. For some fixed j1; :::; jd+2, we denote by P the manifold of all equilibrium distributions F = P (given by equation
(11)) with the moments (14). Then one can show the following theorem by arguments similar to the ones used for the
discrete Boltzmann equation in [17] (or, also [18]).

Theorem 1 If F = F(x) is a solution to the system (13), such that 0 ≤ Fi ≤
1
�

(Fi are non-negative bounded
functions for � = 0), then

lim
x→∞

dist(F(x);P) = 0;

where P is the manifold of equilibrium distributions associated with the invariants (14) of F. If there are only finitely
many equilibrium distributions in P, then there is an equilibrium distribution P in P, such that lim

x→∞
F(x) = P.

Remark 2 A key point in the proof of Theorem 1 (as well as - with x replaced with t - for Theorem 2 below), cf.
[17],[18], is that
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For the spatially homogeneous system

dF



and we will have to exclude the moments j1 and ej1 from the moments (14) and (16), respectively, for Theorem 1 and
Theorem 2 to stay valid. A drawback is that, in general, it will not be clear how to construct the sets P to obtain
normal DVMs. An example when such generalizations (with � = 0) are of interest is for excitations in a Bose gas



since, by the relations (20) and (21),
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By the relations (4) and (11), we obtain the relation

PiP j	� (Pk) 	� (Pl) = PkPl	� (Pi) 	�

�
P j

�
(25)

for �kl
i j , 0. and hence, by relations (3), (22), (23), and (25), we obtain the equality
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Then it is immediate that the matrix L is symmetric and positive semi-definite, i.e.

〈g; L f 〉 = 〈Lg; f 〉 and 〈 f ; L f 〉 ≥ 0,

for all g = g(p) and f = f (p).
Furthermore, by the relation (26), 〈 f ; L f 〉 = 0 if and only if
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for all indices satisfying �kl
i j , 0. We denote f = R1=2� in equality (27) and obtain the relation (8). Hence, since L is

semi-positive,
L f = 0 if and only if f = R1=2�,

where � is a collision invariant (8). Hence, for normal models the null-space N(L) is

N(L) = span
�
R1=2;R1=2 p1; :::;R1=2 pd;R1=2 |p|2

�
, R = P (1 − �P) (1 + (1 − �) P) . (28)

Remark 4 More generally, we can consider the collision operator (19) and obtain corresponding results for the
linearized collision operator L by similar arguments. In particular, the linearized operator L is symmetric and positive
semi-definite. However, if at least one amn such that m , n is nonzero then for normal models the following holds

N(L) = span
�
R1=2 p1; :::;R1=2 pd;R1=2 |p|2

�
, R = P (1 − �P) (1 + (1 − �) P) .

Linearized Spatially Homogeneous Equation
The Cauchy problem for linearized spatially homogeneous equation reads

d f
dt

+ L f = 0, f (0) = f0,

for some f0 ∈ RN , and has a bounded solution
f (t) = e−tL f0,

such that, for any orthogonal basis {y1; :::; yd+2} of the null-space N(L) of L (28),

f (t)→
d+2X
i=1

〈yi; f0〉
〈yi; yi〉

yi, as t → ∞.



Linearized Half-Space Problems
The linearized steady system in a slab-symmetry reads

B
d f
dx

+ L f = 0, f (0) = f0, with B = diag(p1
1; :::; p1

N),

for some f0 ∈ RN , where
x = (x = x1; x2; :::; xd) and p = (p1; :::; pd).

Due to the matrix B, here the situation will be much more intricate than for the spatially homogeneous equation.
However, since above, some general properties of the ”classical” discrete Boltzmann equation (obtained by letting
	� = 1 in the collision operator (2)), have been shown also for the discrete quantum Boltzmann equation, the general
results obtained for linearized half-space problems for the discrete Boltzmann equation obtained in [10, 11] (also cf.
[24]) hold also for the discrete quantum Boltzmann equation presented here. We note that the numbers of positive,
negative, and zero eigenvalues, respectively, of the symmetric (d + 2) × (d + 2) matrix K with elements

ki j =
D
yi; By j

E
,

where {y1; :::; yd+2} is any basis of the null-space N(L) of L (28), is of great importance for these results (see for
example [10, 11, 24, 12]).

CONCLUDING REMARKS

We have presented a general discrete velocity model (DVM) of Boltzmann equation for anyons (or Haldane statistics),
and considered it in the lines of previous studies of the ”classical” discrete Boltzmann equation , see e.g. [10, 11, 12].
As two limiting cases the Nordheim-Boltzmann equation for bosons and fermions are also included. The equilibrium
distributions are shown to satisfy a transcendental equation (11) (a corresponding equation for the continuous case
was first presented in [16]). In certain cases the equation can be analytically solved; we have presented the results in
the simplest cases: for bosons, fermions, and so called semions. By a suitable choice of H-function(s), we obtained
H-theorem(s), and, thereby could state trend to equilibrium in the spatially homogeneous, as well as, in the planar
stationary case. By linearizing around an equilibrium distribution, in a suitable way, we obtained a linearized opera-
tor with similar properties to the linearized operator for the classical discrete Boltzmann operator, i.e. a symmetric,
positive semi-definite operator, with a null-space of the same dimension as the vector space of the collision invari-
ants. Then the solution of the Cauchy problem for linearized spatially homogeneous equation was immediate, while
the results for the linearized steady half-space problems in a slab-symmetry are more intricate. However, while they
are not presented here, the results can be found in [10, 11, 24], where they were presented for linearized operators
of other discrete Boltzmann equations, but with similar properties. Note that half-space problems for the non-linear
Nordheim-Boltzmann equation (i.e. for bosons and fermions) are considered in [12]. We refer the reader to [12] for
the obtained results. However, in the general case there are no such results (for the non-linear equation) yet. We also
stress that all results presented here are independent of the (finite) number of velocities considered.

All results are in general not depending on which collision invariants that are assumed, so for example other
conserved energies than the assumed kinetic one can be considered. However, in implementations, it might be a
di�culty to find ”good” velocity sets, not to have extra (spurious) collision invariants in plus to the desired (physical)
collision invariants (9). On the other hand, for the collision invariants considered, there are well-known procedures to
obtain DVMs without spurious collision invariants, see e.g. [13, 14, 15]. The results can also be generalized to more
general collision operators (28), cf. Remarks 3 and 4, where in many cases mass will not be conserved, and therefore
one might obtain similar di�culties to find ”good” velocity sets as in the case of exchanging energy. On the other
hand from a theoretical point of view there is nothing preventing such generalizations.

We also want to stress that the results presented here can be generalized to mixtures, and particles with a discrete
number of di�erent energy levels, with the approaches presented in [25, 26, 12, 27].

Finally, up to our knowledge and belief, corresponding results - to the ones presented here for DVMs - are also
valid in the case of a continuous velocity variable (with a suitable choice of collision kernels). However, even if some
of them - in a clear way - can be obtained (correspondingly) as above, some others will be more demanding to show.
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