メロトメ部 メモドメモド (店) へん

- **•** Introduction to the models
- Literature to averaging
- Introduction to homogenization
- Main results
- Some proofs
- Some remarks

 2990

化重新润滑

$\begin{picture}(130,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($

メロトメ部 メモドメモド (店) へん

Di usion Reaction model

 \overline{u}

$$
\frac{\partial u^*}{\partial t}(t;x) = \text{div} \quad A \quad \frac{x}{u} \quad r \quad u''(t;x) \quad + \quad \frac{x}{u} \cdot v''(t;x) \quad u''(t;x) + f(t;x)
$$
\n
$$
\frac{\partial u^*}{\partial t}(t;x) = -\frac{1}{u}(v''(t;x)) \quad u''(t;x))dt + \quad \frac{Q}{u}dW(t;x);
$$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - 10 Q Q

Di usion Convection model

 \overline{a} $@11$

Multicontinuum model

@u

1 For stochastic dierential equations:

- \bullet R.Z. Khasminskii, on the principle of averaging the Itô stochastic di erential equation, Kybernetika, (1968).
- A.Yu. Veretennikov, On the averaging principle for systems of stochastic di erential equations, Mat. USSR Sb., (1991).
- M. Freidlin, A. Wentzell, Averaging principle for stochastic perturbations of multifrequency systems, Stochastics and Dynamics, (2003).
- ² For stochastic partial di erential equations:
	- S. Cerrai, A Khasminskii type averaging principle for stochastic reaction-di usion equations, Ann. Appl. Probab., (2009)
	- S. Cerrai, M. Freidlin, Averaging principle for a class of stochastic reaction-di usion equations, Probab. Theory Related Fields, (2009).

Assume to have a sequence of partial dierential operators $L_{''}$ (with oscillating coe cients) and a sequence of solutions u^u which for a given domain D and source f

$$
L \cdot u = f \quad \text{in } D \tag{2}
$$

complemented by appropriate boundary conditions. If we assume that u_u converges in some sense to some u_u , we look for a so-called homogenized operator \overline{L} such that

$$
\overline{L}u = f \quad \text{in } D \tag{3}
$$

Passing from [\(2\)](#page-8-0) to [\(3\)](#page-8-1) is the homogenization process.

つくい

Typically

$$
L \neg u'' = r \quad (a(x; \frac{x}{n}) r u'') :
$$

Formally, in order to nd the form of \overline{L} , one writes the expansion

$$
u''(x) = u_0(x; \frac{x}{n}) + "u_1(x; \frac{x}{n}) + "u_2(x; \frac{x}{n}) + \cdots
$$
 (4)

where each $u_i(x, y)$ is periodic in y. Inserting [\(4\)](#page-9-0) into [\(2\)](#page-8-0) leads to a cascade of equations for u_i and averaging wrt to y the equation for u_0 gives [\(3\)](#page-8-1).

Typically

$$
\overline{L}u_0(x) = r \quad (\overline{a}(x) \cap u_0(x))
$$

where

$$
\overline{a}(x) = \frac{Z}{\gamma} \hbar a(x; y) (I + \Gamma_y N) / (I + \Gamma_y N) / dy;
$$

such that N is solution of the cell problem:

$$
\operatorname{div}(a(1 + r\,N)) = 0 \quad \text{in } Y
$$

and $y \neq N(x, y)$ - is Y periodic. Now, other arguments are needed to prove the convergence of the sequence u_{mo}, 9091 Tf 44 0.845\$ Tf 44.122 21.939 0.636 Td v122 21.939 0.636 Td v12

- **1** The energy method
- ² The two-scale convergence

 \triangleright \rightarrow \exists \triangleright \rightarrow

 299

∍

Literature on homogenization

¹ Homogenization of the Stokes problem in perforated domains

- Sanchez-Palencia (1980) (asymptotic expansion method)
- L. Tartar (the energy method)
- G. Allaire (1992) (two scale convergence method)
- **2** Homogenization of PDEs with random coe cients or stochastic forcing in non perforated domains
	- Bourgeat, A. Mikelic and Wright in (1994)
	- P. A. Razamandimby, M. Sango, and J. L. Woukeng (2012)
- ³ Homogenization of SPDEs in perforated domains (at its infancy)
	- W. Wang and J. Duan (2007)
	- H. Bessaih, Y. Efendiev and F. Maris (2015, 2016)

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

KO K K @ K K B K K B K Y K Y K Y K Y K Y

The

For any " > 0 , we denote by

$$
A^{''}: \mathbb{R}^3 / \mathbb{R}^3 \stackrel{?}{,} A^{''}(x) = A \frac{x}{x} ; \qquad (9)
$$

and

" :
$$
L^2(D) \cdot L^1(D)
$$
; " () $(x) = \frac{x}{n}$; (x) : (10)

We assume that W \mathbb{K} Bm on a ltered poTd [0 g 0 G / F30 10.9091 TQe

E. Pardoux, A. L. Piatniski (2003),

In Cerrai-Friedlin (2009), they consider

$$
du = [A_1u + B_1(u; v)]dt + G_1(u; v)dW
$$

\n
$$
dv = \frac{1}{u}[A_2v + B_2(u; v)]dt + \frac{1}{t^2 u}[B_2(u; v)]dW
$$

Where B_1 and B_2 are Lipschitz-Continuous. In particular, our term $(\sqrt{v})u''$ or $(\sqrt{v})r u''$ do not satisfy these assumptions.

If $u_0^{\prime\prime} \supseteq L^2(D)$ and $v_0^{\prime\prime} \supseteq L^2(D)$ and $L^2(D)$ then there exists a unique global solution $u'' \supseteq L^7$ (; C([0; T]; L²(D) \ L²(0; T; H₀(D)))) and $v'' \supseteq L^2$ (; C([0; T]; $L^2(D)$): P a.s.

D $u''(t)$ D $u_0^{\prime\prime}$ + $-$ t 0 D $A'' \cap u''(s) \cap +$ 0 D $\ddot{\;}$ (v $\ddot{\;}$) $\dot{\;}$ $=\frac{2}{t}$ 0 Z D $f(s)$;

for every $t \geq [0, T]$ and every $\geq H_0^1(D)$, and Z_{\perp} $Z_{\rm t}$

$$
v''(t) = v_0''e^{-t^2} + \frac{1}{u} \int_0^{t} u''(s)e^{-(t-s)^2} ds + \frac{1}{t^{2} - t} e^{-(t-s)}
$$

YO A H (FE) YEN YEN ORA

Uniform estimates

$$
\sup_{s>0} ku^{''}k_{L^7} (C/L^2(0;T;H_0^1(D))) \qquad C_{T}.
$$
 (11)

$$
\sup_{T>0} k u^{T} k_{L^{T}} \left(\quad C([0,T];L^{2}(D)) \right) \quad C_{T} \tag{12}
$$

and

$$
\sup_{r>0} \frac{e u^r}{e t} \int_{L^1(\tau) L^2(0, T; H^{-1}(D)))} C_T. \tag{13}
$$

$$
\sup_{r>0} \mathsf{E} \sup_{t\geq 0} k v^{(r)}(t) k_{L^2(D)}^2 \qquad C_T: \tag{14}
$$

メロトメ 御 トメ 君 トメ 君 ト

目

For xed $2 L²(D)$:

$$
\begin{array}{rcl}\ndv & = & (v) dt + \frac{D}{Q} dW;\n\end{array} \tag{15}
$$

This equation admits a unique mild solution v (t) $2 L^2$ (; C(0; T; L²(D))) given by: $v(t) = e^{t} + (1 e^{t}) +$ 0 $e^{-(t-s)^{1}}$ $\overline{Q}dW$: (16)

 $\mathcal{A} \otimes \mathcal{P} \rightarrow \mathcal{A} \otimes \mathcal{P} \rightarrow \mathcal{A} \otimes \mathcal{P} \rightarrow \mathcal{A} \otimes \mathcal{P}$

The equation [\(15\)](#page-19-0) admits a unique ergodic invariant measure that is strongly mixing and gaussian with mean and operator Q. We also have:

$$
P_t \quad () \qquad \qquad \frac{Z}{L^2(D)} \quad (z) d \quad (z) \qquad c [\quad] e^{-t} (1 + k \ k_{L^2(D)} + k \ k_{L^2(D)}) ;
$$

for any Lipschitz function adeaned on $L^2(D)$, where [] is the Lipschitz constant of .

We need more re ned results for the fast motion equation.

So for any \div 2 L²($\div F_{t_0}$; L²(D)), and a.e. \pm 2 we have:

$$
E \quad kv \quad (t) k_{L^{2}(D)}^{2} / F_{t_{0}} \qquad 2 \quad k \quad k_{L^{2}(D)}^{2} e^{-2(t-t_{0})} + k \quad k_{L^{2}(D)}^{2} + \text{Tr}Q \quad ;
$$
\nand

$$
E \t P_t^{(1)} (1)) \t Z \t |
$$

\n
$$
E \t P_t^{(1)} (1)
$$

\n
$$
C[e^{(t-t_0)}(1 + k (1)k_{L^2(D)} + k (1)k_{L^2(D)})
$$

押 トメミ トメミ トーヨ

Lemma

Let $2 C^{u}([0; T]; L^{1} (; Lip(L^{2}(D))))$ be an F_t - measurable process on Lip(L²(D)), and let 0 $t_0 < t_0 +$ T. For \Rightarrow 2 L²(\Rightarrow F_{to}: L²(D)), let v \Rightarrow be the previous solution. We have:

 $E = \frac{1}{2}$ $t_0 +$ t_0 $(s; v \in (s))$ $L^2(D)$ $(s; z)d$ (z) ds F_{t_0} c 1 + k k_{L2(D)} + k k_{L2(D)} $\frac{k}{\sqrt{P}}$ + $\frac{k}{k}$ K $\frac{N}{N}$ | () (18)

where $\lceil \ \rceil$ is the modulus of uniform continuity of .

This lemma is crucial because, we need to apply the semigroup P_t to a function of the form

$$
f''(s; \cdot) = \frac{Z}{D} \quad (x; \cdot) u''(x; \cdot) dx
$$

化重 网络

 2990

∍

We introduce \therefore Y / R the solution of the cell problem

div $(A(y) (1 + r (y))) = 0$ in Y; Y periodic;

御 ▶ すぼ ▶ すぼ ▶

E

 \Box

Our main result of the di usion reaction equation

KO K K @ K K B K K B K Y K Y K Y K Y K Y

メロトメ部 メモドメモド (店) へん

Our main result of the multicontinuum equation

Theorem (Bessaih-Efendiev-Maris, 2020)

 \circ

Assume similar properties for initial conditions. Then, there exist \overline{u}_{1} ; \overline{u}_{2} \geq L $^{2}($ 0 ; T ; $H_{0}^{1}(D)$ $) \,$ \setminus C([0 ; T] ; L $^{2}(D)$) such that $u_{1}^{''}$; $u_{2}^{''}$ converge in probability to \overline{u}_1 ; \overline{u}_2 :

$$
\begin{array}{rcl}\n\geq & \stackrel{\mathscr{E}}{\geq} & \frac{\mathscr{E} \mathbf{u}_1}{\mathscr{E} \mathbf{t}} & = \text{div} \ \overline{A}_1 \cap \overline{u}_1 + -(g_1(\overline{u}_1; \overline{u}_2); g_2(\overline{u}_1; \overline{u}_2)) (\overline{u}_2 - \overline{u}_1) + f_1 \text{ in } D; \\
&\geq & \stackrel{\mathscr{E} \mathbf{u}_2}{\mathscr{E} \mathbf{t}} & = \text{div} \ \overline{A}_2 \cap \overline{u}_2 + -(g_1(\overline{u}_1; \overline{u}_2); g_2(\overline{u}_1; \overline{u}_2)) (\overline{u}_1 - \overline{u}_2) + f_2 \text{ in } D; \\
&\quad + & \text{initial conditions, boundary conditions;} \n\end{array}
$$
\n(21)

イロト イ押 トイヨ トイヨ トー

We need to pass to the limit in " on the variational formulation

$$
\begin{array}{ccc}\nZ & Z & Z & Z \\ \nu''(t) & D & 0 & D\n\end{array}
$$
\n
$$
\begin{array}{ccc}\nZ & Z & Z & Z \\ \nD & 0 & D & D\n\end{array}
$$
\n
$$
\begin{array}{ccc}\nZ & Z & Z & \cdots & Y \\ \nD & 0 & 0 & D\n\end{array}
$$
\n
$$
\begin{array}{ccc}\nZ & Z & Z & \cdots & Y \\ \nD & 0 & 0 & D\n\end{array}
$$

Here, we use tightness arguments and pass to the limit in distribution only. After changing the space of probability, the sequence $u^{''}$ given by Skorokhod theorem converges a.s. to \overline{u} strongly in $L^2(0; T; H_0^1(D))$

つくい

Kロト K部ト K目 KK目 K 目 → の&@

Fix n["] a positive integer and let $=$ $\frac{7}{2}$ $\frac{1}{n^{\pi}}$. We de ne a^{π} as the piecewise constant function:

イロメ 不倒 メイモメ イモメー 走っ

 QQ

$$
a''(t) = u''(k'') \text{ for}
$$

A simple calculation shows that

$$
\lim_{t \to 0} k \mathbf{a}^{\text{w}} \quad u^{\text{w}} k_{L^{\text{p}}} (0; \tau; L^2(D)) = 0;
$$
 (23)

$$
\lim_{t \to 0} k \mathbf{e}^{\prime\prime} \quad \mathbf{v}^{\prime\prime} k_{L^{\gamma}} \quad (0, T; L^{2}(D)) = 0; \tag{24}
$$

4日)

個→ メミト メミト

E

 \leftarrow \Box

$$
\begin{array}{ccc}\n & \sum & \tau \sum & \\
 & \sum & \left(\begin{array}{cc} \alpha & \mu & \mu \\ \mu & \mu & \mu \end{array} \right) \end{array}
$$
\n
$$
= \sum_{k=0}^{n} \sum_{k=0}^{n} \left(\begin{array}{cc} \alpha & \mu & \mu \\ \mu & \mu & \mu \end{array} \right) \begin{array}{cc} \left(\begin{array}{cc} \mu & \mu \\ \mu & \mu \end{array} \right) \end{array} \begin{array}{cc} \text{(1)} & \mu & \mu \\ \text{(2)} & \mu & \mu \end{array}
$$

K ロ K イロ K K ミ K X ミ K X X Y Y Q Q C

 \Box

For the convergence of S_3^r , we used the homogenization results

G. Allaire (1991), Homogenization of the Navier-Stokes Equations with a Slip Boundary Condition.

つへへ

For any
$$
t \geq [0; T]
$$
, $F_t^{\prime\prime}: L^2(D) \neq L^2(D)$,
\n $F_t^{\prime\prime}(z)(x) = \frac{x}{\pi}, z(x) \frac{z}{y}$ (y; z(x)) $u(t; x)$:

By a density argument, we show that: for any $z \geq L^2(D)$, for every $t \, 2 \, [0; \mathcal{T}]$ and a.e. $l \, 2$,

$$
\lim_{\eta \searrow 0} F_t^{\,\prime}(\text{BfJJ/TJ/F\text{ATTF}\text{FfJT} \text{J/F\text{Ff}}\text{FfJ/TJ/F\text{F}F\text{F}
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

メロメメ 御 メモ メメモ メーモー・マー

The sequence being also uniformly bounded by $ck\overline{u}k_{L^{\gamma}}$ (; $c([0; \tau]; L^2(D)))$ k $\overline{k}_{L^{\gamma}}$ ($\overline{\omega})$ k $\overline{\theta}k_{L^{\gamma}}$ [$0; \tau]$. We apply the bounded convergence theorem and integrate over $\qquad \, [0; \mathcal{T}]$ and get that

$$
\lim_{n \to \infty} E/S_3^n = 0.
$$

convergence of S_2^n is simpler:

$$
E/S_{2}^{'''}(C \lt k \lt k_{L^{\gamma}(D)} \lt k \lt k_{L^{\gamma}[0;T]} E \lt k u^{'''}(\overline{u}k_{L^1(0;T;H^1_0(D)))}:
$$

implies that

The

$$
\lim_{''\neq 0}\mathsf{E}\,jS_{2}^{''}j=0.
$$

 2990

性

メイラメイラメー

Combining the convergences of S_1^r , S_2^r and S_3^r we get that

$$
\lim_{t \to 0} E \bigg[\frac{Z \tau Z}{0 \tau} \big(\tilde{f}(v''(t)) u''(t) - (\overline{u}(t)) \overline{u}(t) \big) \, dx dt
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q

- Tackle the full di usion problem
- \bullet Tackle the case of coe cient dependent on time, the non-autonomous case
- Generalize to the case of SPDEs for the particle equations
- Find some rate of convergence. This is related to better convergence, like convergence in mean.

- H. Bessaih, Y. Efendiev, F. Maris, Homogenization of Brinkman
ows in heterogenous dynamic media, SPDE: Analysis and Computations, 3 (2015), no 4, 479{505.
- H. Bessaih, Y. Efendiev, F. Maris, Stochastic homogenization for a di usion-convection equation, Discrete Contin. Dyn. Syst., 39 (2019), no. 9, 5403{5429.
- H. Bessaih, F. Maris, Stochastic homogenization of multicontinuum heterogeneous
ows, Journal CAM, Vol 374 2020.
- H. Bessaih, Y. Efendiev, F. Maris, Stochastic homogenization

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 Ω