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Di�usion Reaction model

@u"

@t
(t; x) = div

�
A
�x

"

�
ru"(t; x)

�
+ �

�x

"
; v "(t; x)

�
u"(t; x) + f (t; x)

dv "(t; x) = �1

"
(v "(t; x)� u"(t; x))dt +

r
Q

"
dW (t; x);



Di�usion Convection model

@u"

@



Multicontinuum model

@u
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Introduction to the homogenization

Assume to have a sequence of partial di�erential operators L"
(with oscillating coe�cients) and a sequence of solutions u" which
for a given domain D and source f

L"u" = f in D (2)

complemented by appropriate boundary conditions. If we assume
that u" converges in some sense to some u, we look for a so-called
homogenized operator L such that

Lu = f in D (3)

Passing from (2) to (3) is the homogenization process.
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Typically

L"u
" = �r � (a(x ;

x

"
)ru"):

Formally, in order to �nd the form of L, one writes the expansion

u"(x) = u0(x ;
x

"
) + "u1(x ;

x

"
) + "2u2(x ;

x

"
) + : : : (4)

where each ui (x ; y) is periodic in y . Inserting (4) into (2) leads to
a cascade of equations for ui and averaging wrt to y the equation
for u0 gives (3).
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Typically
Lu0(x) = �r � (a(x)ru0(x));

where

a(x) =

Z
Y
ha(x ; y)(I +ry N); (I +ry N)idy ;

such that N is solution of the cell problem:

� div(a(I +rN)) = 0 inY

and y ! N(x ; y)- is Y periodic.
Now, other arguments are needed to prove the convergence of the
sequence uhmgp10.9091 Tf 44 0.845s1 Tf 44.122 21.939 0.636 Td v.122 21.939 0.636 Td v.122 21.939 0.c78 5.636 -1.636 Td [(0)]TJ/F26 10.9091 Tf 4.73 -1.636.Td [(;)]TJ
0 ;



Homogenization methods

1 The energy method

2 The two-scale convergence
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Literature on homogenization

1 Homogenization of the Stokes problem in perforated domains

S�anchez-Palencia (1980) (asymptotic expansion method)
L. Tartar (the energy method)
G. Allaire (1992) (two scale convergence method)

2 Homogenization of PDEs with random coe�cients or
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Bourgeat, A. Mikeli�c and Wright in (1994)
P. A. Raza�mandimby, M. Sango, and J. L. Woukeng (2012)

3 Homogenization of SPDEs in perforated domains (at its
infancy)

W. Wang and J. Duan (2007)
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Assumptions

The �



For any " > 0, we denote by

A" : R3 ! R3�3; A"(x) = A
�x

"

�
; (9)

and

�" : L2(D)! L1(D); �"(�)(x) = �
�x

"
; �(x)

�
: (10)

We assume that W is Bm on a �ltered poTd [0 g 0 G
/F30 10.9091 TQe-333(Bm)-3t(r)-3327 Tf 4.242 12.109 Td [(�)]TJ
0 g 3space10.909013245.33(a54933(that)]T-33212.11 Td [(�)]TJ/F091 2.14 4.505 Td L)]TJ/F34 7.9701f 240.9091 TfF12.11 Td [(�)]TJ/ 1024.14 4.505 Td L)(3�1



Compare with the existing literature

E. Pardoux, A. L. Piatniski (2003),



In Cerrai-Friedlin (2009), they consider

du = [A1u + B1(u; v)]dt + G1(u; v)dW

dv =
1

"
[A2v + B2(u; v)]dt +

1p
"

G2(u; v)dW :

Where B1 and B2 are Lipschitz-Continuous.
In particular, our term �(�; v ")u" or �(�; v ")ru" do not satisfy
these assumptions.
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If u"0 2 L2(D) and v "0 2 L2(
; L2(D)) then there exists a unique
global solution u" 2 L1(
; C ([0;T ]; L2(D) \ L2(0;T ; H1

0 (D))))
and v " 2 L2(
; C ([0;T ]; L2(D)): P a.s.Z

D
u"(t)��

Z
D

u"0�+

Z t

0

Z
D

A"ru"(s)r�+

Z t

0

Z
D
�"(v ")u"�

=

Z t

0

Z
D

f (s)�;

for every t 2 [0;T ] and every � 2 H1
0 (D), and

v "(t) = v "0 e�t="+
1

"

Z t

0
u"(s)e�(t�s)="ds+

1p
"

Z t

0
e�(t�s



Uniform estimates

sup
">0
ku"kL1(
;L2(0;T ;H1

0 (D))) � CT ; (11)

sup
">0
ku"kL1(
;C([0;T ];L2(D))) � CT ; (12)

and

sup
">0





@u"

@t






L1(
;L2(0;T ;H�1(D)))

� CT : (13)

sup
">0

E sup
t2[0;T ]

kv "(t)k2
L2(D) � CT : (14)

Florian Maris Stochastic homogenization of multicontinuum models



The fast motion equation

For �xed � 2 L2(D):�
dv � = �(v � � �)dt +

p
QdW ;

v(0) = �:
(15)

This equation admits a unique mild solution
v �(t) 2 L2(
; C (0;T ; L2(D))) given by:

v �(t) = �e�t + �(1� e�t) +

Z t

0
e�(t�s)

p
QdW : (16)
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The equation (15) admits a unique ergodic invariant measure ��

that is strongly mixing and gaussian with mean � and operator Q.
We also have:�����P�

t �(�)�
Z

L2(D)
�(z)d��(z)

����� � c[�]e�t(1+k�kL2(D) +k�kL2(D));

for any Lipschitz function � de�ned on L2(D), where [�] is the
Lipschitz constant of �.
We need more re�ned results for the fast motion equation.
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So for any �; � 2 L2(
;Ft0 ; L
2(D)), and a.e. ! 2 
 we have:

E
�
kv �;�(t)k2

L2(D)jFt0

�
� 2

�
k�k2

L2(D)e
�2(t�t0) + k�k2

L2(D) + TrQ
�
;

and

E

 �����P�(!)
t �(�(!))�

Z
L2(D)

�(z)d��(!)(z)

����� ���Ft0

!
�

c[�]e�(t�t0)(1 + k�(!)kL2(D) + k�(!)kL2(D));
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Key Lemma

Lemma

Let � 2 Cu([0;T ]; L1(
; Lip(L2(D)))) be an Ft - measurable
process on Lip(L2(D)), and let 0 � t0 < t0 + � � T . For
�; � 2 L2(
;Ft0 ; L

2(D)), let v �;� be the previous solution. We
have:

E

 �����1�
Z t0+�

t0

 
�(s; v �;�(s))�

Z
L2(D)

�(s; z)d��(z)

!
ds

����� ���Ft0

!
�

c
�
1 + k�kL2(D) + k�kL2(D)

��k�kp
�

+
p
k�k[�](�)

�
;

(18)

where [�] is the modulus of uniform continuity of �.
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This lemma is crucial because, we need to apply the semigroup P�
t

to a function of the form

�"(s; �) =

Z
D
�"(�)u" ("s) dx
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The cell problem

We introduce � : Y ! R the solution of the cell problem

�
div (A(y) (I +r�(y))) = 0 in Y ;

� �Y periodic;
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Our main result of the di�usion reaction equation





Our main result of the multicontinuum equation

Theorem (Bessaih-Efendiev-Maris, 2020)

Assume similar properties for initial conditions. Then, there exist
u1; u2 2 L2(0;T ; H1

0 (D)) \ C ([0;T ]; L2(D)) such that u"1; u
"
2

converge in probability to u1; u2:8>>><>>>:
@u1

@t
= div

�
A1ru1

�
+ �(g1(u1; u2); g2(u1; u2))(u2 � u1) + f1 in D;

@u2

@t
= div

�
A2ru2

�
+ �(g1(u1; u2); g2(u1; u2))(u1 � u2) + f2 in D;

+ initial conditions, boundary conditions;
(21)



Sketch of the proof

We need to pass to the limit in " on the variational formulation

Z
D

u"(t)��
Z

D
u"0�+

Z t

0

Z
D

A�ru"(s)r�+

Z t

0

Z
D
�"(v ")u"�

=

Z t

0

Z
D

f (s)�;

Here, we use tightness arguments and pass to the limit in
distribution only. After changing the space of probability, the
sequence u" given by Skorokhod theorem converges a.s. to u
strongly in L2(0;T ; H1

0 (D))
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Key steps-for S"
1

Fix n" a positive integer and let �" =
T

n"
. We de�ne eu" as the

piecewise constant function:

eu"(t) = u"(k�") for



A simple calculation shows that

lim
�"!0

keu" � u"kL1(0;T ;L2(D)) = 0; (23)

so we also have that

lim
�"!0

kev " � v "kL1(0;T ;L2(D)) = 0; (24)
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Z T

0

Z
D

(�"(ev "(t))� �"(eu"(t)))�"(t)dxdt

=
n"�1X
k=0

Z (k+1)�"

k�"

Z
D

(�"(ev "(t))� �"(eu"(t)))�"(t)dxdt:
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For the convergence of S"3 , we used the homogenization results

G. Allaire (1991), Homogenization of the Navier-Stokes
Equations with a Slip Boundary Condition.
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For any t 2 [0;T ], F "t : L2(D)! L2(D),

F "t (z)(x) =

�
�
�x

"
; z(x)

�
�
Z

Y
� (y ; z(x))

�
u(t; x):

By a density argument, we show that: for any z 2 L2(D), for every
t 2 [0;T ] and a.e. ! 2 
,

lim
"!0

F "t (.9701 Tf 5.909 3.959 Td [(2)]TJ/F26 105n Tf 391 Tf 10]TJ/F48250.9091 Tf 37.10059 d [(()]TJ/F48 gF48 10.9091 Tf 4.849 --8909.8.  020x





The sequence being also uniformly bounded by
ckukL1(
;C([0;T ];L2(D)))k�kL1(D)k 0kL1[0;T ]. We apply the
bounded convergence theorem and integrate over 
� [0;T ] and
get that

lim
"!0

E jS"3 j = 0:

The convergence of S"2 is simpler:

E jS"2 j � ck�kL1(D)k kL1[0;T ]E ku" � ukL1(0;T ;H1
0 (D))) :

implies that

lim
"!0

E jS"2 j = 0:
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Combining the convergences of S"1 , S"2 and S"3 we get that

lim
"!0

E
����Z T

0

Z
D

(�"(v "(t))u"(t)� �(u(t))u(t))�dxdt

����



Some remarks

Tackle the full di�usion problem

Tackle the case of coe�cient dependent on time, the
non-autonomous case

Generalize to the case of SPDEs for the particle equations

Find some rate of convergence. This is related to better
convergence, like convergence in mean.
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