


Introduction to the models

Literature to averaging

Introduction to homogenization

Main results

Some proofs

Some remarks

Florian Maris Stochastic homogenization of multicontinuum models



«O» «F»






Di usion Reaction model

@@ut"(t;x)zdiv A 5 ru(t;x) + ),(—,;v"(t;x) u (t;x) +f(t;x)
r_

dv(t;x) = %(V"(t;x) u (t;x))dt + ?—,dW(t;x);



Di usion Convection model



Multicontinuum model

@u




Literature on averaging

© For stochastic di erential equations:

e R.Z. Khasminskii, on the principle of averaging the 1t¢
stochastic di erential equation, Kybernetika, (1968).

e A.Yu. Veretennikov, On the averaging principle for systems of
stochastic di erential equations, Mat. USSR Sb., (1991).

e M. Freidlin, A. Wentzell, Averaging principle for stochastic
perturbations of multifrequency systems, Stochastics and
Dynamics, (2003).

@ For stochastic partial di erential equations:

e S. Cerrai, A Khasminskii type averaging principle for stochastic
reaction-di usion equations, Ann. Appl. Probab., (2009)

e S. Cerrai, M. Freidlin, Averaging principle for a class of
stochastic reaction-di usion equations, Probab. Theory
Related Fields, (2009).



Introduction to the homogenization

Assume to have a sequence of partial di erential operators L-
(with oscillating coe cients) and a sequence of solutions u- which
for a given domain D and source f

L-u-=f inD (2)

complemented by appropriate boundary conditions. If we assume
that u- converges in some sense to some u, we look for a so-called
homogenized operator L such that

Lu=f inD 3)

Passing from (2) to (3) is the homogenization process.
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Typically y
Lu' = r (ax;3)ru’):

Formally, in order to nd the form of L, one writes the expansion

X
S R 4)
where each uj(x;y) is periodic in y. Inserting (4) into (2) leads to
a cascade of equations for u; and averaging wrt to y the equation

for ugp gives (3).

U(X) = Up(X; =) + Uz (X; =) + "2Up(X
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Typically B
Lup(x) = 1 (a(x)ruo(x));
where
z
ax) = ha(x;y)(I + ryN); (I + ryN)idy;
\%

such that N is solution of the cell problem:
div(a(l + ¥rN)) =0 inY

andy ¥ N(x;y)-is Y periodic.
Now, other arguments are needed to prove the convergence of the
Sequence Upp.9091 744 0.8458 T44.122 21.939 0.636 @v122 21.939 0.636 @vi2



Homogenization methods

@ The energy method
@ The two-scale convergence
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Literature on homogenization

© Homogenization of the Stokes problem in perforated domains
e Sanchez-Palencia (1980) (asymptotic expansion method)
e L. Tartar (the energy method)
e G. Allaire (1992) (two scale convergence method)
@ Homogenization of PDEs with random coe cients or
stochastic forcing in non perforated domains
e Bourgeat, A. Mikelic and Wright in (1994)
e P. A. Raza mandimby, M. Sango, and J. L. Woukeng (2012)
© Homogenization of SPDEs in perforated domains (at its
infancy)

e W. Wang and J. Duan (2007)
e H. Bessaih, Y. Efendiev and F. Maris (2015, 2016)
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For any " > 0, we denote by

ACRIIR 3 A=A X 9)
and
" " X
L2D) T L), O = o (0 (10
We assume that W is Bm on a Itered poTd[0g0G /F30 10.9091 TQe



Compare with the existing literature

E. Pardoux, A. L. Piatniski (2003),



In Cerrai-Friedlin (2009), they consider

du = [Au + By (u; v)]dt + G1(u; v)dW
1
dv = Tll[sz + Ba(u;v)]dt + pGo(u; v)dW:
Where B1 and B, are Lipschitz-Continuous.

In particular, our term  (;v')u" or (;v’)ru" do not satisfy
these assumptions.
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If uy 2 L2(D) and vy 2 L2( ;L2(D)) then there exists a unique
global solution u” 2 L1( ;C([0; T];L?(D) \ L?(0; T; H(D))))

and v' 2 L%( ;C([0;T];L3(D)): P as.
z yA Z.Z Z.Z
u’(t) up + Aru@)r +
D D
2P
= f(s) ;
0 D
for every t 2 [0; T] and every 2 H3(D), and
z t z t

W

" . " _n 1
Vi) =vge '+ u'G)e @ ds+p. e O

0 0



Uniform estimates

sUpku'kia( zoTmgom  CT (1)
supku'kia cqorrzey  Cri (12)
and "
sup ou Cr: (13)
>0 O (2 20T 10
SUpE sup kv (t)kfypy Cr: (14)
">0  t2[0:T]
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The fast motion equation

For xed 2 L%(D):

dv. = (v )dt+deW; (15)
v() = :
This equation admits a unique mild solution
v (t) 2 L2( ;C(0;T;L?(D))) given by:
Z, p_
vi)=e '+ 1 e H+ e &9 Qdw: (16)
0
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The equation (15) admits a unigue ergodic invariant measure
that is strongly mixing and gaussian with mean and operator Q.
We also have:

z
Pe () ) @d @) cf le "A+k kep)*+k ko)

for any Lipschitz function de ned on L2(D), where [ ] is the
Lipschitz constant of
We need more re ned results for the fast motion equation.
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Soforany ; 2L?( ;Fy;L%(D)),andae. ¥ 2 we have:

E kv’ (DkG)iFr, 2 K Kopye 2 0 +k kppy +TrQ
and

7 L

E R (M) @ V0 F

c[ Je © WA +k (Nkezpy +k (Mkzpy);
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Key Lemma

Lemma

Let 2 CY([0;T];L( ;Lip(L3(D)))) be an Fy - measurable
process on Lip(L?(D)), and let 0 tg < to + T. For
; 2L2( ;Fyy;L%(D)), let v i be the previous solution. We

have:
1 1

1 Z g+ . z ) -

E - (s;v ' (s)) (s;z)d (z) ds Fy
to LZ(D)
k k P——
C 1+k kLZ(D) +k kLZ(D) 1@& + k k[ ]( ) ;
(18)

where [ ] is the modulus of uniform continuity of
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This lemma is crucial because, we need to apply the semigroup Py
to a function of the form
Z

s )= (U (s)dx
D
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The cell problem

We introduce :Y ¥ R the solution of the cell problem

dv(Ay)(l +r (y)) =0 inyY;
Y periodic;
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Our main result of the di usion reaction equation






Our main result of the multicontinuum equation

Theorem (Bessaih-Efendiev-Maris, 2020)

Assume similar properties for initial conditions. Then, there exist
Up; Uz 2 L2(0; T;H3(D)) \ C([0; T]; L2(D)) such that uy; u,
converge in probability to Uy; Us:

8
u .= .
% @tl =div Ajru; + (01(U1;U2);02(U1;U2))(U2  Uq) + Ty i

u . o= .
@7t2 =div Artu, + 7(g1(U1;U2); gz(Ul;Uz))(Ul Uz) +fy i

-+ initial conditions, boundary conditions;

(21)




Sketch of the proof

We need to pass to the limit in " on the variational formulation

Z Z Z.2 Z.2
u(t) up + Aru(s)r + “(vOHu”
D D 0 D 0
2.z
= f(s) ;
0 D
Here, we use tightness arguments and pass to the limit in
distribution only. After changing the space of probability, the
sequence u~ given by Skorokhod theorem converges a.s. to U
strongly in L2(0; T; H3(D))
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Key steps-for S,

Fix n  a positive integer and let = o We de ne e as the
piecewise constant function:

e(t)=u(k ") for



A simple calculation shows that

m. ke'  U'kiiTizy = 0; (23)
so we also have that

IITO ke VllkLl(O;T;LZ(D)) =0; (24)
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Z+,Z
( (e'() T(e'(n)) (tdxdt

0
St Z (k1) "L o o )
= 5 ( (e() ~(e(t)) (t)dxdt:

k=0
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For the convergence of Sy, we used the homogenization results

e G. Allaire (1991), Homogenization of the Navier-Stokes
Equations with a Slip Boundary Condition.
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Foranyt 2 [0;T], F, : L2(D) ¥ L?(D),
Z
RO = 2200 L iz00) uex);

By a density argument, we show that: for any z 2 L?(D), for every
t2[0;T]and ae. 1 2

lim Fe (W@ ARTIFAT AT IFA@[{TIFGFATA






The sequence being also uniformly bounded by

CkUkLl( ;C([O;T];LZ(D)))k kLl(D)k okLl[o;T]. We apply the
bounded convergence theorem and integrate over [0;T] and
get that

Jim EjSzj = 0:

The convergence of S, is simpler:

EiSzi ¢k kiak kiaprERU  Tkigrioyy
implies that

lim EjSj = 0:
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Combining the convergences of S;, S, and S; we get that

Z.2
lim E ( (@)U T@Em)ut)) dxdt
= 0 D



Some remarks

@ Tackle the full di usion problem

e Tackle the case of coe cient dependent on time, the
non-autonomous case

e Generalize to the case of SPDEs for the particle equations

e Find some rate of convergence. This is related to better
convergence, like convergence in mean.
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