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Alzheimer Disease (AD)I

Alzheimer disease is characterized pathologically by the formation of senile plaques
composed of [3-amyloid peptide (APB). AB is naturally present in the brain and
cerebrospinal fluid of humans throughout life. By unknown reasons (partially genetic),
some neurons start to present an imbalance between production and clearance of A[3

amyloid during aging. Therefore, neuronal injury is the result of ordered A[3
self-association.






Under these assumptions, the discrete diffusive coagulation equations read

%(t,x)—di LUi(t,X) = Qi(u)  in[0,T]x Q, 1)

where Q) is the spatial domain and [0, T] a time interval.

The variable U;j(t, X)



A Mathematical Model for the Aggregation and Diffusion I

of B-Amyloid Peptide'

Figure 1. Periodically (left) and randomly (right) perforated domains.

In the present work, we account for the non-periodic cellular structure of the brain.

The distribution of neurons is modeled in the following way: there exists a family of
predominantly genetic causes, not wholly deterministic, which influences the position
of neurons and the microscopic structure of the parenchyma in a portion of the brain

tissue Q.



We consider non-periodic random diffusion coefficients and a random production of
A3 in the monomeric form at the level of neuronal membranes.

This together defines a probability space (Q, F, P).

Denoting by w  Q the random variable in our model, the set of random holes in R™
(representing the neurons) is labeled by G(w).

The production of [3-amyloid at the boundary I'(w) of G(w)






fl<s<M

€
% _ diV(DS(t’ X, Tgw) Xug) + US }\/IZl ds,j Uj: = % f;} aj,s—j U;' Ug_j in [0, T] x QS
[Ds(t, X, Tx0) xug]-n=0 on[0, T]><0Q
[Ds(t, X, Txw)  xUg]-vrg, =0 on [0, T] = I'§,

u(0, x



We assume that the movement of clusters results only from a diffusion process
described by a stationary ergodic random matrix

di; (t, X, Txw) = Ds(t, X, Tx0) 1<s<M
! = ij=1,..m e

where (t,x) [0, T] > Q.

The production of [3-amyloid peptide by the malfunctioning neurons is described
imposing a non-homogeneous Neumann condition on the boundary of the holes,
randomly selected within our domain.

To this end, we consider on I“a a stationary ergodic random function

n:[0,T]>xQxQ - [0,1] 8)

where the value '0’ is assigned to ’healthy’ neurons while all the other values in ]0, 1]
indicate different degrees of malfunctioning.

Moreover, we assume that I is an increasing function of time, since once the neuron
has become 'ill', it can no longer regain its original state of health.



Stationary ergodic dynamical systems I

Definition 1 (Dynamical system) Let(Q,F,P) be a probabuty space An
M d. -efs.ona,dyna «€a.,syste s de [ged as afa -ayof -edsurabe bjectve
appmgs x: Q - Qx R™M satﬁfymat e fomwma cond.t.ons

. 1_e group property Tp = 1 1.t e.dentty appma Txty = Ix°Ty Xy RT

ute Aapfjlnos Tx ! Q - Qopreservet e <asureP onQ .e foreveryx RM
and every P easurabe setF F we aveP(14F) = P(F)

wte apT :QxR™ 5 Q (0,X) - TxW .s durabe _fort e standard
0) aJaebra ont e product space w ereonR™ weta et e Bore.O aJaebra[

Definition 2 (Ergodicity). A dyna &, syste s ca.ed ergod.c .f one of t e fo.ow.ng
equ.va ent cond.t.ons .S fu. féed

s guven a _easurab.e and .nvar.ant functon t .nQ t at.s
x RM™ f(w) = f(1x0)
a, @steveryw ere.nQ t en
f(w) =const for P—ae w Q;

wJdF Fuissuc tatiyF=F x R™tenP(F)=0o0rP(F)=1
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Definition 3 (Stationarity). G.ven a probab.ity space (Q,F,P) a rea.vaued process .s a
_easurabe functonf :R™Mx Q - R e ww,say T .s statonary .ft e distrbuton of
t e rando <arabef(y,):Q - R



Let LP(Q) (1 < p < oo) denote the space formed by (the equivalence classes of)
measurable functions that are [P-integrable with exponent p and L*°









One important property of random measures is the following generalization of the
Birkhoff ergodic theorem






Concerning the random geometries, we make the assumptions listed below.

Definition 4. An open setG  R™.ssadtobe . -a.ys @0t wi constants
(5,N, M) .fwe -aycoverl” =dG by a countab.e sequence of open sets (Ui); , suc
t at

.. Eac x R™ .scontaned.nat @STN oft e open sets U;
2, Foranyx T t eba.Bs(X) .s contanned .n at east one U;

.~ Forany1 t e porton oft e boundary I .ns.de U; agyees _.n.so _eCartes.an
syste =Of 'c':oord,nates[ wit t e gap of a Lypsc .tz funct.on w ose Lpsc .tz
se #for «sat estM

Let @ be a bounded domain in R™. For given constants (3, N, M), we consider G(w) a
random open set which is a.s. minimally smooth with constants (0, N, M) (uniformly
minimally smooth).

We furthermore assume that G(w) := ; ,, Gi(w) is a countable union of disjoint open
balls Gj(w) with a maximal diameter d,.
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We consider G*(w) := ¢G(w) and

Q°(w) == Q\



Stochastic two-scale convergence I

Definition 5. LetW := (Y;); ,, bet e countabe dense fa =y of C,(Q) functons
A = (di)i w be a countabe dense subset of C(Q) w Qy _setof fu.. Aéé’sbre[ and
ué  L2(0,T;L%(Q)) fora.e >0

esayt atU®






Domains with holes

Lemma7. Letu® L2(Q) be a sequence of functons suc t atsup.-, U® L2(Q) < @0
If (U )er o 48 @ Subsequence suc t atue’ *° uforso €U L2(Q;L2(Q)) t en
U* X@= - UXge

Lemma8. Letu® L2(0,T;H!(Q%w))) be a sequence of funct.ons suc t at

pou U L2(0,T5H1 (@5 (@) + 0tU™ L2(0,T5L2(Q8(w)) < ©°-
>

"~ ent ereex.stfunctonsu  L2(0, T;HY(Q)) wit ou  L2(0, T;L%(Q)) and
v L2(0,T;L*(Q; L2, (Q)) suc t atEcu® uwea y.nL?*Q,T;HY(Q))and
EeU® — u strongy .n L2(0,T;L2(Q)) as we..as

825

2s
u® = Xge U, OtU €

2s
€ Xae¢ dtu, and u Xgt U+ XgoV.
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Homogenization'

We obtain the following “deterministic” (i.e. for fixed W Q) existence and regularity
result.

Theorem 2. LPPOSE a.t € assu PLONS on our rando <06 & od

enforPae w Qandforanye>0t e syste ? . ad dsaunque -ax. 4.
c.ass.ca. so.ut.on

Uo = (U1 -+ Ugg,m)

suc t at

. tereexstsa (0,1) a dependmo ony on



In the sequel we shall rely on the fact that statements that hold P-a.e. can be seen as
deterministic assertions, since they hold whenever Q®



Main statement

Theorem 5. Letu&(t,x) 1.<s <M, be a fa -y of nonnegat.ve cass.ca.soutonstot e
syste 4!_‘,’7 -

Denote by a t.de t e extens.on by zero outs.de Q°(w) and et Xsc represent t e
c aracter.st.c funct.on of t e rando «€tGt(w) w ereGC .st eco @7 entof G
representngt e set of rando ~«Ges.nR™,

~en t esequences (U)e>0 ( xUE)e=0 and (0tUg)e=0 1< S < M, stoc astca.y

two scae converge to [Xge Us(t, X)] [Xge (' xUs(t, X) + vs(t, X, w))] [Xge Ot Us(t, X)]
1=s= M, respect.vey

e, Jﬁb funct.ons [(t, X)pg



If s = 1:

0 M1 (t, %) — divy D (t%) Ui (tX)

+0 uy (t, X) }V':l ap j uj(t,x) = QXFGG Nt x, 0)durp(w) in[0,T]xQ
[D;(t,X) xU;



If s = M:

8 9UM (£, %) — divx Dyy(t,X) xUnm(t.X)

=5 ke 250 Uk(t X) n[0,T]x Q
K<M(if j=M) (26)
J<M(ifk=M)

[DM (t’ X) xUm (t, X)] -n=20 on [()’ T] X aQ

where 8=, Xge dup (@) = P(GP).

D, (t, X) is a deterministic matrix, called "effective diffusivity”:

(Ds)ij (. X) = Xge Ds(t, X, 0)(wi(t, X, w) + &) - (wj(t, X, 0) + &) dP(w)
Q

(Wi)1<i<m

L2([0, T] < Q; Lf)ot(GC)) the family of solutions of the following

microscopic problem:

—divy,[Ds(t, X, 0)(Wi(t, X, w) + &)] =0 in GG on
Ds(t, X, 0)[wi(t, X, w) + &] - Vr o =0 on INse.
m AU
Vs(t, X, w) = wi (t, X, 0) (t,x) Iss=M).

aXi

i=1
26



Proof of the main Theorem.

In view of the previous Theorems, the sequences

—— €
(UE)o~q, ( xUE).-, and aauts (1 <s < M)are bounded in L2([0, T] < Q).

€=>0




In the case when s = 1, let us multiply the first equation of (5) by the test function @=.
Integrating, the divergence theorem yields

T auﬁ € T € €
— @°(t, X, w) dx dt + Di(t, X, Txw) xu7, @° dxdt
0 Q) Ot 0 Q(w) ®
T M T
+ ui  apjujei(tx,w)dxdt=¢ n(t, X, x0) e°(t, X, ) d

0 Q) i 0 T%(w)



The term on the right-hand side of (28) follows from the lemma

Lemma9. Let(gi); , be acountabe fa Ay nL=(Q xT;L x Mr.p) ~ ent ereex.sts a
setof fu., edsureQqy Qsuc t atfora. esteveryw Qg everyi N everyy W
andeveryd Cu(Q)t e fo.ow.ng ods

lim g X,T:0 GEQU(T0)dE (0= Gi(x, B)V(@) durp (B) dx.
e Q Q

The last term on the left-hand side of (28) has been obtained b



An integration by parts shows that (28) can be put in the strong form associated with

the following homogenized system:

—divy[Dy (L, X, 0)( xUp(t, X) + vi(t, X, 0))] =0 in [0, T] < Q x G°

[Dl(tl X, (A))( XU1(t, X) + Vl(tl X, (A)))] ' VFGG =0 on [01 T] x Q X rC—)G

in [0,T] < Q

0 %(t, X) — divy Xae D1(t, X, w)( xu;(t, X) + vi(t, X, w))dP(w)
Q
M
+ 0 U1(t, X) al,j uj (t1 X) _ XFGC r](t1 X, (L)) duF,P(w) =0
i=1 .

Xce Di(t, X, 0)( xui(t,xX) +vi(t, X, w))dP(w) -n=20
Q

30

on [0, T] > 0Q.

(29)

(30)

(31)

(32)






By using the relation (33) in Egs.(31) and (32), we get

M
0 %(t, X) —divx D;(t,x) xui(t,x) +0uy(t,x) ap,j Uj (t, x)

1=l (35)

- QXFGG N x,w)durp(@) =0 in[0,T]>xQ

[D; xui(t,x)] n=0 on [0, T] % dQ (36)

where the entries of the matrix D, (called "effective diffusivity”) are given by

(Dy)ij(t,x) = . Xae D1 (t, X, w)[w;(t, X, w) +~
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