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Alzheimer Disease (AD)

Alzheimer disease is characterized pathologically by the formation of senile plaques

composed of β-amyloid peptide (Aβ). Aβ is naturally present in the brain and

cerebrospinal fluid of humans throughout life. By unknown reasons (partially genetic),

some neurons start to present an imbalance between production and clearance of Aβ
amyloid during aging. Therefore, neuronal injury is the result of ordered Aβ
self-association.
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Under these assumptions, the discrete diffusive coagulation equations read

∂ui

∂t
(t, x) − di △xui(t, x) = Qi(u) in [0, T ] × Q, (1)

where Q is the spatial domain and [0, T ] a time interval.

The variable ui(t, x)



A Mathematical Model for the Aggregation and Diffusion

of β-Amyloid Peptide

Figure 1: Periodically (left) and randomly (right) perforated domains.

In the present work, we account for the non-periodic cellular structure of the brain.

The distribution of neurons is modeled in the following way: there exists a family of

predominantly genetic causes, not wholly deterministic, which influences the position

of neurons and the microscopic structure of the parenchyma in a portion of the brain

tissue Q.
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We consider non-periodic random diffusion coefficients and a random production of

Aβ in the monomeric form at the level of neuronal membranes.

This together defines a probability space (Ω,F ,P).

Denoting by ω ∈ Ω the random variable in our model, the set of random holes in R
m

(representing the neurons) is labeled byG(ω).

The production of β-amyloid at the boundary Γ(ω) of G(ω)
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We assume that the movement of clusters results only from a diffusion process

described by a stationary ergodic random matrix
(
ds

i,j(t, x, τ x
ε
ω)

)
i,j=1,...,m

=: Ds(t, x, τ x
ε
ω) 1 ≤ s ≤ M

where (t, x) ∈ [0, T ] × Q.

The production of β-amyloid peptide by the malfunctioning neurons is described

imposing a non-homogeneous Neumann condition on the boundary of the holes,

randomly selected within our domain.

To this end, we consider on Γε
Q a stationary ergodic random function

η : [0, T ] × Q × Ω → [0, 1] (8)

where the value ’0’ is assigned to ’healthy’ neurons while all the other values in ]0, 1]
indicate different degrees of malfunctioning.

Moreover, we assume that η is an increasing function of time, since once the neuron

has become ’ill’, it can no longer regain its original state of health.
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Stationary ergodic dynamical systems

Definition 1 (Dynamical system). Let (Ω,F ,P) be a probability space. An

m-dimensional dynamical system is defined as a family of measurable bijective

mappings τx : Ω → Ω, x ∈ R
m, satisfying the following conditions:

(i) the group property: τ0 = 1 (1 is the identity mapping), τx+y = τx ◦ τy ∀x, y ∈ R
m;

(ii) the mappings τx : Ω → Ω preserve the measure P on Ω, i.e., for every x ∈ R
m,

and every P-measurable set F ∈ F , we have P(τxF ) = P(F );

(iii) the map T : Ω × R
m → Ω: (ω, x) 7→ τxω is measurable (for the standard

σ-algebra on the product space, where on R
m we take the Borel σ-algebra).

Definition 2 (Ergodicity). A dynamical system is called ergodic if one of the following

equivalent conditions is fulfilled:

(i) given a measurable and invariant function f in Ω, that is

∀x ∈ R
m f(ω) = f(τxω)

almost everywhere in Ω, then

f(ω) = const. for P − a.e. ω ∈ Ω;

(ii) if F ∈ F is such that τxF = F ∀x ∈ R
m, then P(F ) = 0 or P(F ) = 1.
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Definition 3 (Stationarity). Given a probability space (Ω,F ,P), a real valued process is a

measurable function f : R
m × Ω → R. We will say f is stationary if the distribution of

the random variable f(y, ·) : Ω → R



Let Lp(Ω) (1 ≤ p < ∞) denote the space formed by (the equivalence classes of)

measurable functions that are P-integrable with exponent p and L∞







One important property of random measures is the following generalization of the

Birkhoff ergodic theorem





Concerning the random geometries, we make the assumptions listed below.

Definition 4. An open setG ⊂ R
m is said to be minimally smooth with constants

(δ,N,M) if we may cover Γ = ∂G by a countable sequence of open sets (Ui)i∈N
such

that

1) Each x ∈ R
m is contained in at most N of the open sets Ui.

2) For any x ∈ Γ, the ball Bδ(x) is contained in at least one Ui.

3) For any i, the portion of the boundary Γ inside Ui agrees (in some Cartesian

system of coordinates) with the graph of a Lipschitz function whose Lipschitz

semi-norm is at most M .

Let Q be a bounded domain in R
m. For given constants (δ,N,M), we consider G(ω) a

random open set which is a.s. minimally smooth with constants (δ,N,M) (uniformly

minimally smooth).

We furthermore assume that G(ω) :=
⋃

i∈N
Gi(ω) is a countable union of disjoint open

balls Gi(ω) with a maximal diameter d0.
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We consider Gε(ω) := εG(ω) and

Qε(ω) := Q\





Stochastic two-scale convergence

Definition 5. Let Ψ := (ψi)i∈N
be the countable dense family of Cb(Ω)-functions,

Λ = (ϕi)i∈N be a countable dense subset of C(Q), ω ∈ ΩΨ (set of full measure) and

uε ∈ L2(0, T ;L2(Q)) for all ε > 0.

We say that uε





Domains with holes

Lemma 7. Let uε ∈ L2(Q) be a sequence of functions such that supε>0 ‖uε‖L2(Q) < ∞.

If (uε′

)ε′→0 is a subsequence such that uε′ 2s
⇀ u for some u ∈ L2(Q;L2(Ω)), then

uε χQε
2s
⇀ uχG{ .

Lemma 8. Let uε ∈ L2(0, T ;H1(Qε(ω))) be a sequence of functions such that

sup
ε>0

‖uε‖L2(0,T ;H1(Qε(ω))) + ‖∂tu
ε‖L2(0,T ;L2(Qε(ω))) < ∞ .

Then there exist functions u ∈ L2(0, T ;H1(Q)) with ∂tu ∈ L2(0, T ;L2(Q)) and

v ∈ L2(0, T ;L2(Q;L2
pot(Ω))) such that Eεu

ε⇀u weakly in L2(0, T ;H1(Q)) and

Eεu
ε → u strongly in L2(0, T ;L2(Q)) as well as

uε 2s
⇀ χG{ u , ∂tu

ε 2s
⇀ χG{ ∂tu , and ∇uε 2s

⇀ χG{∇u+ χG{ v .
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Homogenization

We obtain the following “deterministic” (i.e. for fixed ω ∈ Ω) existence and regularity

result.

Theorem 2. Suppose all the assumptions on our random domain hold.

Then for P-a.e. ω ∈ Ω and for any ε > 0 the system (5)- (7) admits a unique maximal

classical solution

uε
ω = (uε

ω,1, . . . , u
ε
ω,M )

such that

(i) there exists α ∈ (0, 1), α depending only on



In the sequel we shall rely on the fact that statements that hold P-a.e. can be seen as

deterministic assertions, since they hold whenever Qε



Main statement

Theorem 5. Let uε
s(t, x) (1 ≤ s ≤ M ) be a family of nonnegative classical solutions to the

system (5)-(7).

Denote by a tilde the extension by zero outside Qε(ω) and let χG{ represent the

characteristic function of the random setG∁(ω) (whereG∁ is the complement ofG,

representing the set of random holes in R
m).

Then, the sequences (ũε
s)ε>0, (∇̃xuε

s)ε>0 and (∂̃tuε
s)ε>0 (1 ≤ s ≤ M ) stochastically

two-scale converge to: [χG{ us(t, x)], [χG{(∇xus(t, x) + vs(t, x, ω))], [χG{ ∂t us(t, x)]

(1 ≤ s ≤ M ), respectively.

The limiting functions [(t, x)pge



If s = 1:





θ ∂u1
∂t

(t, x) − divx

[
D⋆

1(t, x) ∇xu1(t, x)

]

+θ u1(t, x)
∑M

j=1 a1,j uj(t, x) =

∫

Ω

χΓ
G{
η(t, x, ω) dµΓ,P(ω) in [0, T ] × Q

[D⋆
1(t, x) ∇xu1



If s = M :




θ ∂uM
∂t

(t, x) − divx

[
D⋆

M (t, x) ∇xuM (t, x)

]

= θ
2

∑
j+k≥M

k<M(if j=M)
j<M(if k=M)

aj,k uj(t, x)uk(t, x) in [0, T ] × Q

[D⋆
M (t, x) ∇xuM (t, x)] · n = 0 on [0, T ] × ∂Q

uM (0, x) = 0 in Q

(26)

where θ =
∫
Ω
χG{ dµP(ω) = P(G∁).

D⋆
s(t, x) is a deterministic matrix, called ”effective diffusivity”:

(D⋆
s)ij(t, x) =

∫

Ω

χG{ Ds(t, x, ω)(wi(t, x, ω) + êi) · (wj(t, x, ω) + êj) dP(ω)

(wi)1≤i≤m ∈ L2([0, T ] × Q;L2
pot(G

∁)) the family of solutions of the following

microscopic problem:




−divω[Ds(t, x, ω)(wi(t, x, ω) + êi)] = 0 in G∁

Ds(t, x, ω)[wi(t, x, ω) + êi] · νΓ
G{

= 0 on ΓG{ .
(27)

vs(t, x, ω) =

m∑

i=1

wi(t, x, ω)
∂us

∂xi
(t, x) (1 ≤ s ≤ M).
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Proof of the main Theorem.

In view of the previous Theorems, the sequences

(̃uε
s)ε>0, ˜(∇xuε

s)ε>0 and

(̃
∂uε

s
∂t

)

ε>0

(1 ≤ s ≤ M ) are bounded in L2([0, T ] × Q).



In the case when s = 1, let us multiply the first equation of (5) by the test function φε.

Integrating, the divergence theorem yields

∫ T

0

∫

Qε(ω)

∂uε
1

∂t
φε(t, x, ω) dx dt+

∫ T

0

∫

Qε(ω)

〈
D1(t, x, τ x

ε
ω)∇xu

ε
1,∇φ

ε

〉
dx dt

+

∫ T

0

∫

Qε(ω)

uε
1

M∑

j=1

a1,j u
ε
j φ

ε(t, x, ω) dx dt = ε

∫ T

0

∫

Γε
Q
(ω)

η(t, x, τ x
ε
ω)φε(t, x, ω) d



The term on the right-hand side of (28) follows from the lemma

Lemma 9. Let (gi)i∈N
be a countable family in L∞(Q× Γ; L × µΓ,P). Then there exists a

set of full measure ΩΨ ⊂ Ω such that for almost every ω ∈ ΩΨ, every i ∈ N, every ψ ∈ Ψ

and every ϕ ∈ Cb(Q) the following holds:

lim
ε→0

∫

Q

gi

(
x, τ x

ε
ω

)
ϕ(x)ψ(τ x

ε
ω)dµε

Γ(ω)(x) =

∫

Q

∫

Ω

gi(x, ω̃)ϕ(x)ψ(ω̃) dµΓ,P(ω̃) dx .

The last term on the left-hand side of (28) has been obtained b



An integration by parts shows that (28) can be put in the strong form associated with

the following homogenized system:

−divω[D1(t, x, ω)(∇xu1(t, x) + v1(t, x, ω))] = 0 in [0, T ] × Q ×G∁
(29)

[D1(t, x, ω)(∇xu1(t, x) + v1(t, x, ω))] · νΓ
G{

= 0 on [0, T ] × Q × ΓG{ (30)

θ
∂u1

∂t
(t, x) − divx

[ ∫

Ω

χG{ D1(t, x, ω)(∇xu1(t, x) + v1(t, x, ω))dP(ω)

]

+ θ u1(t, x)
M∑

j=1

a1,j uj(t, x) −

∫

Ω

χΓ
G{
η(t, x, ω) dµΓ,P(ω) = 0 in [0, T ] × Q

(31)

[ ∫

Ω

χG{ D1(t, x, ω)(∇xu1(t, x) + v1(t, x, ω)) dP(ω)

]
· n = 0 on [0, T ] × ∂Q. (32)
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By using the relation (33) in Eqs.(31) and (32), we get

θ
∂u1

∂t
(t, x) − divx

[
D⋆

1(t, x) ∇xu1(t, x)

]
+ θ u1(t, x)

M∑

j=1

a1,j uj(t, x)

−

∫

Ω

χΓ
G{
η(t, x, ω) dµΓ,P(ω) = 0 in [0, T ] × Q

(35)

[D⋆
1∇xu1(t, x)] · n = 0 on [0, T ] × ∂Q (36)

where the entries of the matrixD⋆
1 (called ”effective diffusivity”) are given by

(D⋆
1)ij(t, x) =

∫

Ω

χG{ D1(t, x, ω)[wi(t, x, ω) + ˆ
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