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(Weakly) interacting particle systems

@ The overdamped McKean-Vlasov dynamics (0MK-V)

1 X P
Q= rv(Q) N rqU@Qi Q)+ Wi;
=1
V: con ning potential, U: interaction potential
@ The underdamped McKean-Vlasov dynamics (UMK-V)

1)( P—
Qi= rVv(Q) N rqU@Qi Q) Qi+ 2 1w

=

© The generalized McKean-Vlasov dynamics (gMK-V)

1 X Nt
Q= rv@Q) y rU@Q Q) / ij(t s)Qj(s)ds+Fi(t);
i=1 j=170
where F (t) = (F1(t);:::Fn(t)) is @ mean zero, Gaussian, stationary
process, and [ j(t  s)li;j=1:::;m are autocorrelation functions.
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(Weakly) interacting particle systems

e Applications: statistical physics, mathematical biology, mathematical
models in the social sciences (cooperative behavior, risk management
and opinion formation)

e Many challenging mathematical problems:

Mean- eld limits (N ¥ 1)

Long-time behaviour (t ¥ 1)

Phase transition (strength of the noise varies)

Model reduction (coarse-graining)

Hilbert’s sixth problem
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Markovian approximation of the gMK-V dynamics

e Markovian approximation of the gMK-V dynamics,
dQi(t) = Pi(t)dt

dp; (t)

rV(Qi(t))dt

= rgU@Qi(t) Qt)dt+ TZ(t)dt

j=1
dzi(t) = Pi(t) dt AZi(t)+p2 IADW, (t):

@ e.g., when approximating the memory kernel by a sum of exponentials

> -
n®=""fe
i=1

onecantake =( 1;:::; m)and A=diag( 1;:::; m)
[Kupferman, J. Stat. Phys, 2004.]
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Mean- eld limits (N ¥ +1)

e Each particle convergence to the following SDE (propagation of

chaos)
dQ(t) = P(t)dt;
dP(t) = rVvV(@Q@)dt rqU  (Qydt+ TZ(t)dt;
dz(t) = P() dt AZ(t)+ 2 IAW(t):
e The empirical measure converges to the solution of

h i
@ = divg(p )+ divp (quh(q)+ U (@ T2)

1
+div, (p +Az) + ldiv,(Ar; ):

which is the forward Kolmogorov equation associated to the SDE,
t = Law(Qt; Pt; Zo).
[D., Nonlinear Analysis, 2015] using the coupling method. See [Golse,
Lecture Notes in Applied Mathematics and Mechanics (Editors: Muntean,
Rademacher & Zagaris), 2016] for a survey of the topics.
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From the uMK-V dynamics to the oMK-V dynamics

Classical result: the oMK-V dynamics can be obtained from the uMK-V
dynamics under the high-friction limit ( ¥ +21.) or the zero-mass limit
(m ¥ 0).

Heuristic idea: the underdamped Langevin dynamics

mQ= rv@Q Q+ 2z 1w

Sending m ¥ 0 yields the overdamped Langevin dynamics

Q= rv@+ 2z w

Many di erent approaches, [D.-Lamacz-Peletier-Sharma, CVPDEs 2017]
and [D.-Lamacz-Peletier-Schlichting-Sharma, Nonlinearity 2018]:
variational approach and quanti cation of errors.
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From the gMK-V dynamics to the uMK-V dynamics

e White noise (Markovian) limits: A =" and A A A="2






Main steps of the proof

Step 1. The forward Kolmogorov (Fokker-Planck) equation

e _
T o
= p rqg +(rVvV(@+rqu(@ ) rp

1 T

+ = z rp +p r;

+% divp(Az )+ ldiv(Ar, )

= |—2"‘%L1"'l



Main steps of the proof (cont.)

Step 2: We de ne the function f "(q; p; z; t) through
(@pzit) = a(aps2)f (a:p;zst):
The function f"(q; p; z; t) satis es the equation

@@t= p g +(rV@ + rgu@ (¢ 1)) rf
+ f'p ru@@ 210 f")+f1, Tz rpf +p i f’

+i Az rf + ldivy(Ar,f")

"2
1 1 "
= |/_\2 *|/_\ 72|’_\0 f:
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Main steps of the proof (cont.)

Step 3: We look for a solution of the form
f =fo+"f+"2h+ 0

We obtain the following sequence of equations

|i\ofo =0;

Cofy = Lafo;

N N N @fO
Cofo = Lofg + L1 fg ﬁ
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Step 4:

fo is independent of z:

fo=1f(a;p;1):
The second equation becomes
Cofi = Tz rpf:
The solvability condition is satis ed [since Tz rpf is orthogonal to the
2K2

null space of Ifo which consists of functions of the form e %u(q; p)l.
Therefore, it has a unique solution, up to a term in the null space of CO,

fi= zA ' rpf (thusCifi= TA D kzk® of p rpf )

The solvability condition for the last equation:

kzk?

/ |/_\2f+|i\1f1 gi Z 1e 2 dz =0:

Since [5f &% does not depends on z,

of

2 2
ot = Lof + / (Chf)z e 7 dz:
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Direct computations give
Cof = p rgf +(rvV(@)+rqu(g) (f 1)) rpf+ fp ru(@) ~o(l f);

where ~q satis es
h

ini2
exp Elvv@+U ()
M(g;p) =



Interacting particle systems:
e mean- eld limit
e phase-transition
e model reduction
Future work
e singular interactions
e non-Markovian systems
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