Relative energy approach to a diffuse interface model of a compressible two-phase flow

Madalina PETCU

University of Poitiers

Joint work with: Eduard Feireisl and Dalibor Prazak

Outline of the talk

- Introduction of the model
- 2 Dissipative weak solutions
- 3 Relative energy inequality
- Applications: weak-strong uniqueness principle
- O Applications: low Mach number limit
- O Applications: some numerics on the model

Outline of the talk

- Introduction of the model
- 2 Dissipative weak solutions
- 3 Relative energy inequality
- Applications: weak-strong uniqueness principle
- **6** Applications: low Mach number limit
- O Applications: some numerics on the model

Introduction of the model Overview on the existing results Introduction of the model Overview on the existing results Dissipative weak solutions and main results

Outline of the talk

- Introduction of the model
- 2 Dissipative weak solutions
- 3 Relative energy inequality

4

Introduction of the model

Aim: describe the dynamics of a binary mixture of compressible, viscous and macroscopically immiscible fluids in a bounded domain

Possible approaches:

1.Classical approach: the interface between the two fluids is sharp and is evolving in time along with the fluid, the movement of the interface at each time is determined by a set of interfaci]TJ0 0 7Aalancico

Introduction of the model

Overview on the existing results Dissipative weak solutions and main results Relative energy Application: weak-strong uniqueness Application: incompressible limit Application: numerical approximation

Illustration of a diffuse interface versus a sharp interface

Figure: Illustration of a diffuse interface and of a sharp interface for a mixture of two immiscible fluids

Introduction of the model

Overview on the existing results Dissipative weak solutions and main results Relative energy Application: weak-strong uniqueness Application: incompressible limit Application: numerical approximation

Phase-field approach

- Interface of finite width "
- *c* is an order parameter (e.g. the concentration difference) that takes value 1 in the bulk of one fluid and value 1 in the bulk of the other fluid, varying continuously between 1 and 1 at the interface
- c satisfies an equation of Allen-Cahn type
- the fluid density and respectively velocity (, v) satisfy the compressible Navier-Stokes equations coupled to the Allen-Cahn equation through a capillarity force (div_x $r_x c$ $r_x c \frac{1}{2} |r_x c|^2$

Introduction of the model

Overview on the existing results Dissipative weak solutions and main results Relative energy Application: weak-strong uniqueness Application: incompressible limit Application: numerical approximation

The compressible Navier-Stokes-Allen-Cahn Model

The Blesgen model:

$$@_t + \operatorname{div}_x(\mathbf{u}) = 0, \tag{1}$$

$$@_t(\mathbf{u}) + \operatorname{div}_x(\mathbf{u} \mathbf{u}) + r_x p(\mathbf{v}, \mathbf{c}) = \operatorname{div}_x S(r_x \mathbf{u})$$

$$-\operatorname{div}_{x} \Gamma_{x} c \quad \Gamma_{x} c - \frac{1}{2} |\Gamma_{x} c|^{2} |, \qquad (2)$$

$$@_t(c) + \operatorname{div}_x(cu) = -, \qquad (3)$$

$$= - {}_{x}C + \frac{@f(, c)}{@c}.$$
(4)

The tensor $S(r_x \mathbf{u}) = r_x \mathbf{u}^t + r_x^t \mathbf{u} - \frac{2}{N} \operatorname{div}_x \mathbf{u} + \operatorname{div}_x \mathbf{u} |$, > 0. The free energy is $E_{\text{free}}(\ , c, r_x c) = \frac{1}{2} |r_x c|^2 + f(\ , c)$. The pressure is derived from the free energy $p(\ , c) = -\frac{2}{\varpi} \frac{\Im(r_x c)}{\varpi}$.

Overview on the existing results

Theoretical study of the model: existence of weak and strong solutions, presence

of initial vacuum Blesgen (1999): introduction of the model Feireisl, Petzeltov´ Introduction of the model Overview on the existing results Dissipative weak solutions and main results Relative energy

Application: weak-strong uniqueness

Application: incompressible limit

Application: numerical approximation

Overview on the existing results

A simplified version

We consider the free energy in a simplified form

$$E_{\text{free}} = \frac{1}{2} | \varGamma_x c |^2 + F_c(c) + F_{\theta}(), \qquad (5)$$

yielding the pressure

$$p(, c) = p_e() - F_c(c), p_e() = F_e^{0}() - F_e().$$
 (6)

The Allen-Cahn equation taken in a simplified form:

$$@_t \mathbf{c} + \mathbf{u} \quad \varGamma_x \mathbf{c} = x \mathbf{c} - F_c^{\vartheta}(\mathbf{c}). \tag{7}$$

Boundary conditions: $\mathbf{u} = 0$, $\mathbf{c} = \mathbf{c}_b$ on @ .

$$p_{e} 2 C[0, 1] \setminus C^{1}(0, 1),$$

$$p_{e}^{\ell}() > 0 \text{ for } > 0, \lim_{l \to 1} \inf_{l} p_{e}^{\ell}() > 0, p_{e}() 6 c (1 + F_{e}()) \text{ for all } > 0,$$

$$F_{c} 2 C^{1}(R), F_{c}^{\ell}(c) > 0 \text{ for all } c 2 (-1, -\overline{c}] [[\overline{c}, 1], \overline{c} > 0.$$
(9)

Typically $F_e() = a$, a > 0, > 1, $F_c = (c^2 - 1)^2$ regular double well potential.

Dissipative weak solutions

Let the initial data,

$$(0,) = _{0}, u(0,) = (u)_{0}, c(0,) = c_{0},$$
 (10)

be given in the class

$${}_{0} > 0 \text{ a.e. in }, \frac{Z}{c_{0}} = \frac{|(\mathbf{u})_{0}|^{2}}{c_{0}} + F_{e}(c_{0}) \quad dx < 1 ,$$

$$c_{0} \ge W^{1,2}(c_{0}) \setminus L^{1}(c_{0}), \quad c_{0}|_{e} = c_{b}.$$

$$(11)$$

We search for [, u, c] in the class of functions

$$\begin{array}{l} , F_{\theta}(\) \ 2 \ L^{1} \ (0, \ T; \ L^{1}(\)), &> 0 \ \text{a.a. in} \ (0, \ T) &, \\ \mathbf{u} \ 2 \ L^{2}(0, \ T; \ W_{0}^{1,2}(\ ; \ R^{N})), \\ c \ 2 \ L^{1} \ (0, \ T; \ W^{1,2}(\)) \ \setminus \ L^{2}(0, \ T; \ W^{2,2}(\)) \ \setminus \ L^{1} \ ((0, \ T) \), \ c|_{\varnothing} \ = \ c_{b}; \end{array}$$

Dissipative weak solutions

Dissipative weak solutions

• The Allen-Cahn equation:

$$@_t c + \mathbf{u} \quad f_x c = x c - F_c^{\theta}(c), \text{ a.a. } (0, T) \quad f(0, t) = c_0, \ c|_{@_t} = c_b;$$

• The energy inequality:

Weak-strong uniqueness

Theorem

Let R^N , N = 1, 2, 3 be a bounded Lipschitz domain. Let [, u, c] be a dissipative weak solution in (0, T) in the sense specified above. Suppose that the same problem admits a classical solution [r, U, C], r > 0 defined on the same time interval. Then

$$= r, u = U, c = C in (0, T)$$

Low Mach number limit

After rescaling the elastic pressure:

$$\begin{aligned} @_t &+ \operatorname{div}_x(\mathbf{u}) = 0, \\ @_t(\mathbf{u}) &+ \operatorname{div}_x(\mathbf{u} + \mathbf{u}) + \frac{1}{n_2} r_x p_e(\mathbf{u}) = \operatorname{div}_x S(r_x \mathbf{u}) \\ &- \operatorname{div}_x r_x c + r_x c - \frac{1}{2} |r_x \mathbf{u}| \end{aligned}$$

Introduction of the model Overview on the existing results Dissipative weak solutions and main results

Low Mach number limit

Theorem

Suppose that problem (14) admits a smooth solution [U, C], with the initial data $[U_0, C_0]$, on a time interval [0, T]. Suppose

$$(0,) = _{0,"} = 1 + " _{0,"}^{(1)}, \qquad _{0,"}^{L} dx = 0,$$

 $\mathbf{u}(0, \) = \mathbf{u}_{0,"}, \ \ \frac{(1)}{0,"} \ / \ \ 0 \ in \ L^1 \ (\), \ \mathbf{u}_{0,"} \ / \ \ \mathbf{U}_0 \ in \ L^2 (\ ; \ \mathbf{R}^N),$

 $c(0, \) = c_{0,"} \ 2 \ L^1 \ \setminus \ W_0^{1,2}(\), \ k c_{0,"} \ k_{L^1} \ (\) \ . \ 1, \ c_{0,"} \ ! \ C_0 \ in \ W_0^{1,2}(\)$

as " ! 0. Let [", **u**", **c**"]" > 0 be a dissipative weak solution of the compressible NSAC with the initial data [$_{0,"}$, $\mathbf{u}_{0,"}$, \mathbf{c} "], $k\mathbf{c}$ " $k_{L^1}(_{(0,T)})$ 1. Then

"(
$$t$$
,) / 1 in $L^1($), \mathbf{u} "(t ,) / $\mathbf{U}(t$,) in $L^2($; \mathbf{R}^N), \mathbf{c} "(t ,) / $\mathbf{C}(t$,) in $W^{1,2}($) uniformly for $t \ge [0, T]$.

Introduction of the model Overview on the existing results Dissipative weak solutions and main results Introduction of the model Overview on the existing results Dissipative weak solutions and main results

Relative energy

Application: weak-strong uniqueness Application: incompressible limit Application: numerical approximation

Relative energy inequality

Weak-strong uniqueness

Idea: Take [r, U, C] a strong solution of the problem, use it as test function in the relative energy inequality and apply a Gronwall type argument. Convective term in the equation of continuity:

$$\begin{bmatrix} \mathcal{L} & \mathcal{L} & (\mathbf{U} - \mathbf{u}) & @_t \mathbf{U} + \mathbf{u} & r_x^t \mathbf{U} & (\mathbf{U} - \mathbf{u}) & dx dt \\ 0 & \mathbb{Z} & \mathbb{Z} \\ = & (\mathbf{U} - \mathbf{u}) & @_t \mathbf{U} + & (\mathbf{U} - \mathbf{u}) & r_x^t \mathbf{U} & \mathbf{U} & dx dt \\ \mathbb{Z}^0 & \mathbb{Z} & & \\ + & (\mathbf{u} - \mathbf{U}) & r_x^t \mathbf{U} & (\mathbf{U} - \mathbf{u}) & dx dt \\ \mathbb{Z}^0 & \mathbb{Z} & & \\ + & \mathbf{c}_1 & \mathbb{E} & , \mathbf{c}, \mathbf{u} & \mathbf{r}, \mathbf{C}, \mathbf{U} & dt + & (\mathbf{U} - \mathbf{u}) & r_x F_c(\mathbf{C}) - r_x p_e(\mathbf{r}) - r_x C_x C + \operatorname{div}_x S(r_x \mathbf{U}) & dx dt \\ \mathbb{Z} & \mathbb{Z} & \mathbb{L} & & \\ + & \mathbf{c}_1 & \mathbb{E} & , \mathbf{c}, \mathbf{u} & \mathbf{r}, \mathbf{C}, \mathbf{U} & dt + & (\mathbf{U} - \mathbf{u}) & r_x F_c(\mathbf{C}) - r_x p_e(\mathbf{r}) - r_x C_x C & dx dt \\ \mathbb{Z} & \mathbb{Z}^0 & & \\ - & (r_x \mathbf{U} - r_x \mathbf{u}) : S(r_x \mathbf{U}) & dx dt. \end{bmatrix}$$

We can prove that:

$$Z Z h$$

$$- 1 (\mathbf{U} - \mathbf{u}) \qquad \Gamma_x F_c(C) - \Gamma_x p_e(r) - \Gamma_x C \qquad xC + \operatorname{div}_x S(\Gamma_x \mathbf{U}) \qquad \operatorname{dx} dt$$

$$- C C C_x C + \operatorname{div}_x S(\Gamma_x \mathbf{U}) \qquad \operatorname{dx} dt$$

$$- C C_x C + \operatorname{div}_x S(\Gamma_x \mathbf{U}) \qquad \operatorname{dx} dt$$

Technical ingredient: We introduce a cut-off function $2C_c^1(0, 1)$, 0.6 circ 6.1, $1 ext{ in } [, \frac{1}{2}]$, where s.t. $r(t, x) 2[2, \frac{1}{2}] 8(t, x) 2[0, T]$. For $h 2L^1((0, T))$, we set $h = h_{ess} + h_{res}$, $h_{ess} = ()h$, $h_{res} = (1 - ()h$. We can prove:

$$F_{e}() - F_{e}^{\theta}(r)(-r) - F_{e}(r) \& (-r)_{ess}^{2} + (1+)_{ress}$$

and

$$\mathcal{E}$$
 , **u**, **c r**, **U**, **C** & $|\mathbf{u} - \mathbf{U}|^2 + [-r]_{ess}^2 + 1_{res} + res dx$.

Thus,

$$\begin{bmatrix} Z & Z & h & & i \\ & - & - & 1 & (\mathbf{U} - \mathbf{u}) & r_x F_c(C) - & r_x p_e(r) - & r_x C & x C + \operatorname{div}_x S(r_x \mathbf{U}) & dx dt \\ & 0 & Z & \overline{Z} & & \\ & & | & - r | & |\mathbf{U} - \mathbf{u}| & dx dt \\ & & Z^0 Z & & Z & Z \\ & 6 & |[& - & r]_{ess}| & |\mathbf{U} - \mathbf{u}| & dx dt + & |[& - & r]_{res}| & |\mathbf{U} - \mathbf{u}| & dx dt \\ & & 0 & Z & Z & & \\ & 6 & c() & [& - & r]_{ess}^2 + 1_{res} + & res + & |\mathbf{u} - \mathbf{U}|^2 & dx dt + & \\ & & 0 & 0 & & 0 \end{bmatrix} |\mathbf{u} - \mathbf{U}|^2 & dx dt + & \\ & & 0 & 0 & & 0 & \\ & & 0 & & 0 & \\ & & 0 & & 0 & \\ & & 0 & & 0 & \\ \end{bmatrix} |\mathbf{U} - \mathbf{U}|^2 & dx dt + & \\ & & 0 & & 0 & \\ & & 0 &$$

Using the Korn–Poincaré inequality $Z \qquad Z$ $|\mathbf{u} - \mathbf{U}|^2 + |r_x(\mathbf{u} - \mathbf{U})|^2 dx \leq c_{kp} \quad (\mathbb{S}(r_x\mathbf{u}) - \mathbb{S}(r_x\mathbf{U})) : (r_x\mathbf{u} - r_x\mathbf{U}) dx,$

we get the desired inequality.

Terms containing the order parameter:

h
k
z z
z z
+
$$\binom{1}{t=0} + \binom{2}{t=0} - \frac{1}{4} (S(r_x \mathbf{u}) - S(r_x \mathbf{U})) : (r_x \mathbf{u} - r_x \mathbf{U}) dx dt$$

+ $\binom{1}{x} \mathbf{c} - \frac{1}{x} C [r_x \mathbf{c} - r_x \mathbf{c}] dx dt$
6 $\frac{1}{x} C(r_x \mathbf{c} - r_x \mathbf{c}) (\mathbf{u} - \mathbf{U}) dx dt$
- $\frac{1}{x} C [r_x \mathbf{c} - r_x \mathbf{c}] (\mathbf{u} - \mathbf{U}) dx dt$
+ $\frac{1}{x} C [r_x (\mathbf{c} - \mathbf{c}) - r_x (\mathbf{c} - \mathbf{c}) - \frac{1}{2} |r_x (\mathbf{c} - \mathbf{c})|^2] dx dt$
+ $\frac{1}{x} C [r_x (\mathbf{c} - \mathbf{c}) (F_c(\mathbf{c}) - F_c(\mathbf{c}))] dx dt + \frac{1}{x} C [r_x (\mathbf{c} - \mathbf{c}) - \frac{1}{x} C] (\mathbf{c} - \mathbf{c}) C] dt dt$

Using the boundedness of *c* and *C*, we get:

$$\operatorname{div}_{x} (\mathbf{U} - \mathbf{u}) (F_{c}(c) - F_{c}(C)) + {}_{x}(C - c)(F_{c}^{\theta}(c) - F_{c}^{\theta}(C)) \\ \cdot |r_{x}(\mathbf{u} - \mathbf{U})| + |_{x}c - {}_{x}C| |c - c|.$$

Using the Korn-Poincaré inequality, we obtain:

Application: incompressible limit

7

Existence of the limit problem (incompressible NSAC):

Lin, Liu (1995): Existence of global weak solutions, existence of strong solution globally in 2D and locally in 3D

Thanks to the energy inequality and the continuity equation, [", u", c"] satisfy:

$$\frac{1}{2} = \frac{1}{2} ||\mathbf{u}^{*}|^{2} + \frac{1}{2}|r_{x}c^{*}|^{2} + \frac{1}{2}(F_{e}(-) - F_{e}^{0}(1)(--1) - F_{e}(1))$$

We can write

$$\frac{1}{"2} \left(F_{\theta}(\ ") - F_{\theta}^{\emptyset}(1)(\ "-1) - F_{\theta}(1) \right) \& \quad \frac{"-1}{"} \; \mathop{\stackrel{}_{ess}}{\stackrel{}{=}\;} + \frac{(1+")_{res}}{"2}.$$
(15)

Using the boundedness of the energy

-- (t

$$\mathcal{E}_{*} \quad , \mathbf{u}, \mathbf{c} \quad \mathbf{U}, \mathbf{C} = \begin{bmatrix} \frac{1}{2} & |\mathbf{u} - \mathbf{U}|^{2} + \frac{1}{2} | \mathcal{\Gamma}_{x} \mathbf{c} - \mathcal{\Gamma}_{x} \mathbf{C} |^{2} \\ & + \frac{1}{*2} \left(F_{\theta}(\cdot) - F_{\theta}^{\theta}(1)(\cdot - 1) - F_{\theta}(1) \right) \quad dx \\ \mathcal{E}_{*} \quad & *, \mathbf{c}_{*}, \mathbf{u}_{*} \quad \mathbf{C}, \mathbf{U} \quad \stackrel{i_{t=1}}{\underset{t=0}{\overset{Z \quad Z \quad h}{\overset{K \quad H \quad S(\mathcal{\Gamma}_{x} \mathbf{u}_{*})} : (\mathcal{\Gamma}_{x} \mathbf{u}_{*} - \mathcal{\Gamma}_{x} \mathbf{U}) + \frac{2}{*}}$$

Using the same treatment for the convective terms, we get:

The only term different to the weak-strong uniqueness case is the one in $\Gamma_x - \Gamma_x F_c(C)$: h $\mathcal{E}_{"}$ ", $\mathcal{C}_{"}$, $\mathbf{u}_{"}$ C, \mathbf{U} $i_{t=0}$ Z $\mathcal{E}_{"}$ ", $\mathcal{C}_{"}$, $\mathbf{u}_{"}$ C, \mathbf{U} dt

$$+ \int_{0}^{\infty} (\mathbf{U} - \mathbf{u}_{\cdot}) \Gamma_{x}(-F_{c}(C)) \, \mathrm{d}x \, \mathrm{d}t.$$

From the assumptions on the initial conditions \mathcal{E}_{---} , \mathbf{u}_{--} , \mathbf{u}_{---} , \mathbf{U}_{---} (0) / 0 as " / 0.

Using the continuity equation we also have:

$$Z Z = \begin{bmatrix} Z & Z & Z & Z \\ (\mathbf{U} - \mathbf{u}^{n}) & \Gamma_{x} & dx dt = - \begin{bmatrix} Z & 1 - n \end{bmatrix} \mathbf{u}^{n} & \Gamma_{x} & dx dt - \begin{bmatrix} t - n \\ n & dx \end{bmatrix} \mathbf{u}^{n} = \begin{bmatrix} t - n \\ t = 0 \end{bmatrix} \mathbf{u}^{n}$$

with $\sim = -F_c(C)$ and this term converges uniformly to 0 over 2[0, T].

Application: numerical approximation

Work in collaboration with Eduard Feireisl and Bangwei She: 1. Discretise the problem by a stable and consistent scheme 2. Prove that the numerical solutions converge to a dissipative weak solution and thus, by the weak-strong uniqueness principle, prove the unconditional convergence to a strong solution if the later exists

Starting point:

T. Karper: A convergent FEM-DG method for compressible Navier-Stokes system, 2013 ($\ >$ 3)

E. Feireisl and M. Lukáčová-Medvid'ová: Convergence of a mixed finite element–discontinuous Galerkin scheme for the isentropic Navier-Stokes system via dissipative measure-valued solutions, 2018 (> 1) Here and hereafter we suppose that

 $p \ge C[0, 1] \setminus C^2(0, 1), \ p(0) = 0, \ p^{\theta}() > 0 \text{ for } > 0;$

the pressure potential

Let $\ensuremath{\mathbb{T}}$

Function spaces

 $\mathcal{P}_{d}(K)$

Introduction of the model Overview on the existing results Dissipative weak solutions and main results Relative energy Application: weak-strong uniqueness

Discrete Laplace operator

For any
$$v \geq X_h$$
 we define ${}_h v \geq W_h := \{v \geq X_h\}$ $v \, dx = 0\}$ such that
 $- {}_h v w \, dx = B(v, w)$ for any $w \geq W_h$, (21)
 $B(v, w) = \sum_{r_h v r_h w}^{Z} dx + \sum_{r_h v r_h w}^{Z} [[w]] \mathbf{n} \{r_h v\} + [[v]] \mathbf{n} \{r_h w\} + \frac{c_B}{h^{1+}} [[v]] [[w]] d$

where $c_B > 0$ is a sufficient large constant to ensure the coercivity. The following identity holds:

$$B(v, v - w) = \frac{1}{2}B(v, v) - \frac{1}{2}B(w, w) + \frac{1}{2}B(v - w, v - w).$$

Furthermore, we define the following seminorms

V

Numerical scheme

Some estimates

Lemma (Sobolev inequality)

Let
$$r > 0$$
 be a function defined on \mathbb{R}^d such that
 $\boxed{2}$
 $\boxed{2}$
 $0 < c_M 6 \quad r \, dx$, and $r \, dx 6 \, c_E$ for > 1

where c_M and c_E are some positive constants. Then

$$k \boldsymbol{v}_h k_{L^q(\)}^2 \quad \boldsymbol{c}(k \boldsymbol{\Gamma}_h \boldsymbol{v}_h k_{L^2(\)}^2 + \boldsymbol{r} | \boldsymbol{\hat{v}}_h |^2 \, \mathrm{d} \boldsymbol{x})$$

for any $v_h \ge V_h$, and $1 \le q \le 6$ for d = 3, $1 \le q < 1$ for d = 2, where $c = c(c_M, c_E)$.

7

Stability

Conservation of mass: $\int_{h}^{k} dx = \int_{h}^{k-1} dx = \int_{h}^{0} dx = \int_$

Discrete energy balance: Let $\begin{pmatrix} k \\ h \end{pmatrix}$, u_{h}^{k} , c_{h}^{k}) satisfy the numerical scheme, then:

$$D_{t} = \frac{1}{2} \left[\frac{1}{h} \left[\mathbf{u}_{h}^{k} \right]^{2} + P(\mathbf{u}_{h}^{k}) d\mathbf{x} + D_{t} \right]^{2} F(\mathbf{c}_{h}^{k}) d\mathbf{x} + \frac{1}{2} |k \mathbf{c}_{h}^{k} k|_{B}^{2}$$
$$+ k \Gamma_{h} \mathbf{u}_{h}^{k} k_{L^{2}}^{2} + k \operatorname{div}_{h} \mathbf{u}_{h}^{k} k_{L^{2}}^{2} + k D_{t} \mathbf{c}_{h}^{k} + \mathbf{u}_{h}^{k} \Gamma_{h} \mathbf{c}_{h}^{k} k_{L^{2}}^{2} = -D_{num} \mathbf{u}_{h}^{k}$$

where $D_{num} > 0$ is the numerical dissipation $D_{num} = \frac{t}{2} \sum_{h=1}^{Z} j_{D_{t}} u_{h}^{\Omega_{t}} j^{2} dx + \frac{1}{2} \times$

Introduction of the model Overview on the existing results Dissipative weak solutions and main results Relative energy

Uniform bounds

Lemma

Let $({}_{h}, \mathbf{u}_{h}, \mathbf{c}_{h})$ be a solution to the numerical scheme for > 1. Then: $k_{h}|\mathbf{u}_{h}|^{2}k_{L^{1}L^{1}} = 1, \quad k_{h}k_{L^{1}L} = 1, \quad k_{h}\mathbf{u}_{h}k_{L^{1}L^{\frac{2}{2}+1}} = 1,$ $kr_{h}\mathbf{u}_{h}k_{L^{2}L^{2}} = 1, \quad kdiv_{h}\mathbf{u}_{h}k_{L^{2}L^{2}} = 1, \quad ku_{h}k_{L^{2}L^{p}} = 1, \quad k_{h}\mathbf{u}_{h}k_{L^{2}L^{q}} = 1,$ $\sup_{t^{2}(0,T)}|kc_{h}k| = \sup_{t^{2}(0,T)}|kc_{h}(t)k|_{B} = 1, \quad kf_{h}k_{L^{1}L^{2}} = kc_{h}k_{L^{1}L^{2}} = kF(c_{h})k_{L^{1}L^{1}} = 1,$ $kc_{h}k_{L^{1}L^{p}} = \sup_{t^{2}(0,T)}|kc_{h}k|_{B} + kc_{h}k_{L^{1}L^{2}} = 1, \quad kD_{t}c_{h} + u_{h} = r_{h}c_{h}k_{L^{2}L^{2}} = 1,$ $k_{h}c_{h}k_{L^{2}L^{2}} = 1, \quad kD_{t}c_{h}k_{L^{2}L^{3}=2} = 1.$ where $p \ge [1, 1], q \ge [1, 1]$ if d = 2 or $p = 6, q = \frac{6}{4+6}$ if d = 3.

Introduction of the model	
Overview on the existing results	
Dissipative weak solutions and main results	
Relative energy	
Application: weak-strong uniqueness	
Application: incompressible limit	
Application: numerical approximation	

The idea of the proof is to construct a mapping $\ensuremath{\mathcal{F}}$ that satisfies the topological degree theory. Define:

$$\begin{aligned} V &= \begin{pmatrix} k \\ h \end{pmatrix} U_h^k 2 Q_h & \mathcal{M}_h, \ k > 0 \\ W &= \begin{pmatrix} k \\ h \end{pmatrix} U_h^k 2 Q_h & \mathcal{M}_h, \ k U_h^k k \in C_2, \ < \ k < C_1 \\ \end{aligned}$$

where $\mathbf{U}_{h}^{k} := (\mathbf{u}_{h}^{k}, \mathbf{c}_{h}^{k}) \ \mathcal{2} \mathbf{V}_{h}$ $X_{h} =: \mathcal{M}_{h}$ and the norm $k U_{h}^{k} k$ is given by $k U_{h}^{k} k - k \mathbf{u}_{h}^{k} k_{L^{6}} + k \mathbf{c}_{h}^{k} k_{L^{2}}$.

Next, for 2[0, 1] and $U^{?} = (\mathbf{u}^{?}, \mathbf{c}^{?})$ we define

 $\mathsf{F}: V \quad [0,1] ! \quad Q_h \quad \mathsf{M}_h, \quad \left(\begin{array}{c} k \\ h \\ \end{array} \right) \begin{array}{c} \mathsf{U}_h^k, \end{array} \right) \quad ,$

F%F104 5.9776 Tf 6.034 58300

Consistency

Theorem	
Let (