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Introduction of the model

Aim: describe the dynamics of a binary mixture of compressible,
viscous and macroscopically immiscible fluids in a bounded
domain

Possible approaches:
1.Classical approach: the interface between the two fluids is sharp
and is evolving in time along with the fluid, the movement of the
interface at each time is determined by a set of interfaci]TJ
0 0 7Aalanc
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Illustration of a diffuse interface versus a sharp interface

Figure: Illustration of a diffuse interface and of a sharp interface for a
mixture of two immiscible fluids
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Phase-field approach

Interface of finite width ε

c is an order parameter (e.g. the concentration difference) that takes value
1 in the bulk of one fluid and value −1 in the bulk of the other fluid, varying
continuously between −1 and 1 at the interface

c satisfies an equation of Allen-Cahn type

the fluid density and respectively velocity (ρ, v) satisfy the compressible
Navier-Stokes equations coupled to the Allen-Cahn equation through a
capillarity force (divx

�
∇x c ⊗ ∇x c − 1

2 |∇x c|2I
�
)
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The compressible Navier-Stokes-Allen-Cahn Model

The Blesgen model:

∂tρ + divx (ρu) = 0, (1)

∂t(ρu) + divx (ρu ⊗ u) + ∇x p(ρ, c) = divx S(∇x u)

−divx

�
∇x c ⊗ ∇x c −

1
2
|∇x c|2I

�
,

(2)

∂t(ρc)+divx (ρcu) = −µ, (3)

ρµ = −∆x c + ρ
∂f (ρ, c)

∂c
. (4)

The tensor S(∇x u) = ν
�
∇x ut + ∇t

x u − 2
N divx uI

�
+ λdivx uI, ν > 0.

The free energy is Efree(ρ, c, ∇x c) = 1
2 |∇x c|2 + ρf (ρ, c).

The pressure is derived from the free energy p(ρ, c) = ρ2 ∂f(ρ,c)
∂ρ

.
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Overview on the existing results

Theoretical study of the model: existence of weak and strong solutions, presence
of initial vacuum
Blesgen (1999): introduction of the model
Feireisl, Petzeltov´
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A simplified version
We consider the free energy in a simplified form

Efree =
1
2
|∇x c|2 + Fc(c) + Fe(ρ), (5)

yielding the pressure

p(ρ, c) = pe(ρ) − Fc(c), pe(ρ) = ρF ′
e (ρ) − Fe(ρ) . (6)

The Allen-Cahn equation taken in a simplified form:

∂t c + u · ∇x c = ∆x c − F ′
c (c). (7)

Boundary conditions: u = 0, c = cb on ∂Ω.

pe ∈ C[0, ∞) ∩ C∞(0, ∞),

p ′
e(ρ) > 0 for ρ > 0, lim inf

ρ→∞ p ′
e(ρ) > 0, pe(ρ) 6 c (1 + Fe(ρ)) for all ρ > 0,

(8)

Fc ∈ C∞(R), F ′′
c (c) > 0 for all c ∈ (−∞, −c] ∪ [c, ∞), c > 0. (9)

Typically Fe(ρ) = aργ, a > 0, γ > 1, Fc = (c2 − 1)2 regular double well potential.

Madalina PETCU Relative energy for a compressible two-phase flow
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Dissipative weak solutions
Let the initial data,

ρ(0, ·) = ρ0, ρu(0, ·) = (ρu)0, c(0, ·) = c0, (10)

be given in the class

ρ0 > 0 a.e. in Ω,

Z
Ω

�
|(ρu)0|

2

ρ0
+ Fe(ρ0)

�
dx < ∞,

c0 ∈ W 1,2(Ω) ∩ L∞(Ω), c0|∂Ω = cb.

(11)

We search for [ρ, u, c] in the class of functions

ρ, Fe(ρ) ∈ L∞(0, T ; L1(Ω)), ρ > 0 a.a. in (0, T ) × Ω,

u ∈ L2(0, T ; W 1,2
0 (Ω; RN)),

c ∈ L∞(0, T ; W 1,2(Ω)) ∩ L2(0, T ; W 2,2(Ω)) ∩ L∞((0, T ) × Ω), c|∂Ω = cb;
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Dissipative weak solutions
The integral identity for ρ�Z

Ω

ρφ dx
�t=τ

t=0
=

Zτ

0

Z
Ω

[ρ∂tφ + ρu · ∇x φ] dx dt, ∀τ > 0, φ ∈ C1([0, T ]×Ω);

The integral identity for the momentum equation�Z
Ω

ρu · φ dx
�t=τ

t=0
=

Zτ

0

Z
Ω

[ρu∂tφ + ρu ⊗ u : ∇xφ + pe(ρ)divxφ] dx dt

−

Zτ

0

Z
Ω

S(∇x u) : ∇xφ dx dt

+

Zτ

0

Z
Ω

�
∇x c ⊗ ∇x c −

1
2
|∇x c|
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Dissipative weak solutions

The Allen-Cahn equation:

∂t c + u · ∇x c = ∆x c − F ′
c (c), a.a. (0, T ) × Ω, c(0, ·) = c0, c|∂Ω = cb;

The energy inequality:�Z
Ω

�
1
2

ρ|u|2 +
1
2
|∇x c|2 + Fe(ρ) + Fc(c)

�
dx

�t=τ

t=0

+

Zτ

0

Z
Ω

S(∇x u) : ∇x u dx dt +

Zτ

0

Z
Ω

[∆x c − F ′
c (c)]

2
dx dt 6 0, ∀ τ > 0.
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Weak-strong uniqueness

Theorem

Let Ω ⊂ RN , N = 1, 2, 3 be a bounded Lipschitz domain. Let
[ρ, u, c] be a dissipative weak solution in (0, T ) × Ω in the sense
specified above. Suppose that the same problem admits a
classical solution [r , U, C], r > 0 defined on the same time interval.
Then

ρ = r , u = U, c = C in (0, T ) × Ω.
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Low Mach number limit

After rescaling the elastic pressure:

∂tρ + divx (ρu) = 0,

∂t(ρu) + divx (ρu ⊗ u) +
1
ε2

∇x pe(ρ) = divx S(∇x u)

−divx

�
∇x c ⊗ ∇x c −

1
2
|∇x u
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Low Mach number limit
Theorem

Suppose that problem (14) admits a smooth solution [U, C], with the initial data
[U0, C0], on a time interval [0, T ]. Suppose

ρ(0, ·) = ρ0,ε = 1 + ερ
(1)
0,ε ,

Z
Ω

ρ
(1)
0,ε dx = 0,

u(0, ·) = u0,ε, ρ
(1)
0,ε → 0 in L∞(Ω), u0,ε → U0 in L2(Ω; RN),

c(0, ·) = c0,ε ∈ L∞ ∩ W 1,2
0 (Ω), ∥c0,ε∥L∞(Ω) . 1, c0,ε → C0 in W 1,2

0 (Ω)

as ε → 0. Let [ρε, uε, cε]ε>0 be a dissipative weak solution of the compressible
NSAC with the initial data [ρ0,ε, u0,ε, cε], ∥cε∥L∞((0,T)×Ω) . 1. Then

ρε(t, ·) → 1 in L1(Ω), uε(t, ·) → U(t, ·) in L2(Ω; RN), cε(t, ·) → C(t, ·) in W 1,2(Ω)

uniformly for t ∈ [0, T ].
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Relative energy inequalityh
E

�
ρ, c, u

���r , C, U
�it=τ

t=0
+

Zτ

0

Z
Ω

h
S(∇x u) : (∇x u − ∇x U) + µ2

i
dx dt

6 −

Zτ

0

Z
Ω

�
Fc(c)divx u + µF ′

c (c)
�

dx dt

+

Zτ

0

Z
Ω

�
ρ(U − u) · ∂t U + ρu · (U − u) · ∇t

x U · (U − u)
�

dx dt

−

Zτ

0

Z
Ω

�
ρ∂t F ′

e(r) + ρu · ∇x F ′
e(r)

�
dx dt −

Zτ

0

Z
Ω

pe(ρ)divx U dx dt

−

Zτ

0

Z
Ω

�
∇x c ⊗ ∇x c −

1
2

|∇x c|2I
�

: ∇x U dx dt +

Zτ

0

Z
Ω

Fc(c)divx U dx dt

+

Zτ

0

Z
Ω

∂t (∆x C)c dx dt +

Zτ

0

Z
Ω

∆x C [µ − u · ∇x c] dx dt

+

Zτ

0

Z
Ω

∂t

� Z

Ω
+
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Weak-strong uniqueness
Idea: Take [r , U, C] a strong solution of the problem, use it as test function in the relative
energy inequality and apply a Gronwall type argument.
Convective term in the equation of continuity:Zτ

0

Z
Ω

�
ρ(U − u) · ∂t U + ρu · ∇t

x U · (U − u)
�

dx dt

=

Zτ

0

Z
Ω

�
ρ(U − u) · ∂t U + ρ(U − u) · ∇t

x U · U
�

dx dt

+

Zτ

0

Z
Ω

ρ(u − U) · ∇t
x U · (U − u) dx dt

6
Zτ

0

Z
Ω

h
(

ρ

r
− 1)(U − u) ·

�
∇x Fc(C) − ∇x pe(r) − ∇x C∆x C + divx S(∇x U)

�i
dx dt

+ c1

Zτ

0
E

�
ρ, c, u

���r , C, U
�

dt +

Zτ

0

Z
Ω

h
(U − u) ·

�
∇x Fc(C) − ∇x pe(r) − ∇x C∆x C

�i
dx dt

−

Zτ

0

Z
Ω

(∇x U − ∇x u) : S(∇x U) dx dt.
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We can prove that:Zτ

0

Z
Ω

h�ρ

r
− 1

�
(U − u) ·

�
∇x Fc(C) − ∇x pe(r) − ∇x C∆x C + divx S(∇x U)

�i
dx dt

6 c2

Zτ

0
E

�
ρ, c, u

���r , C, U
�

dt +
1
2

Zτ

0

Z
Ω

(S(∇x u) − S(∇x U)) : (∇x u − ∇x U) dx dt.

Technical ingredient: We introduce a cut-off function Ψ ∈ C∞
c (0, ∞),

0 6 Ψ 6 1, Ψ ≡ 1 in [δ, 1
δ
], where δ s.t. r(t, x) ∈ [2δ, 1

2δ
] ∀ (t, x) ∈ [0, T ] × Ω.

For h ∈ L1((0, T ) × Ω), we set
h = hess + hres, hess = Ψ(ρ)h, hres = (1 − Ψ(ρ))h. We can prove:

Fe(ρ) − F ′
e (r)(ρ − r) − Fe(r) & (ρ − r)2

ess + (1 + ρ)res

and

E
�

ρ, u, c
��� r , U, C

�
&

Z
Ω

�
ρ|u − U|2 + [ρ − r ]2ess + 1res + ρres

�
dx .
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Thus,Zτ

0

Z
Ω

h�ρ

r
− 1

�
(U − u) ·

�
∇x Fc(C) − ∇x pe(r) − ∇x C∆x C + divx S(∇x U)

�i
dx dt

.
Zτ

0

Z
Ω

|ρ − r | |U − u| dx dt

6
Zτ

0

Z
Ω

|[ρ − r ]ess| |U − u| dx dt +

Zτ

0

Z
Ω

|[ρ − r ]res| |U − u| dx dt

6 c(δ)

Zτ

0

Z
Ω

[ρ − r ]2ess + 1res + ρres + ρ|u − U|2 dx dt + δ

Zτ

0

Z
Ω

|u − U|2 dx dt

Using the Korn–Poincaré inequalityZ
Ω

|u − U|2 + |∇x (u − U)|
2 dx 6 ckp

Z
Ω

(S(∇x u) − S(∇x U)) : (∇x u − ∇x U) dx ,

we get the desired inequality.
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Terms containing the order parameter:h
E

�
ρ, c, u

���r , C, U
�it=τ

t=0
+

Zτ

0

Z
Ω

1
4

(S(∇x u) − S(∇x U)) : (∇x u − ∇x U) dx dt

+

Zτ

0

Z
Ω

|∆x c − ∆x C|2 dx dt

6
Zτ

0

Z
Ω

∆x C(∇x C − ∇x c) · (u − U) dx dt

−

Zτ

0

Z
Ω

∇x U :

�
∇x (C − c) ⊗ ∇x (C − c) −

1
2
|∇x (C − c)|2I

�
dx dt

+

Zτ

0

Z
Ω

divx (U − u) (Fc(c) − Fc(C)) dx dt

+

Zτ

0

Z
Ω

[∆x (C − c)(F ′
c (c) − F ′

c (C))] dx dt + c4

Zτ

0
E

�
ρ, c, u

���r , C, U
�

dt.
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Using the boundedness of c and C, we get:��divx (U − u) (Fc(c) − Fc(C))
�� +

��∆x (C − c)(F ′
c (c) − F ′

c (C))
��

.
�
|∇x (u − U)| + |∆x c − ∆x C|

�
|c − C|.

Using the Korn-Poincaré inequality, we obtain:h
E

�
ρ, c, u

���r , C, U
�it=τ

t=0
.

Zτ

0
E

�
ρ, c, u

���r , CC−



Introduction of the model
Overview on the existing results

Dissipative weak solutions and main results
Relative energy

Application: weak-strong uniqueness
Application: incompressible limit

Application: numerical approximation

Application: incompressible limit
Existence of the limit problem (incompressible NSAC):
Lin, Liu (1995): Existence of global weak solutions, existence of strong solution
globally in 2D and locally in 3D
Thanks to the energy inequality and the continuity equation, [ρε, uε, cε] satisfy:�Z

Ω

�
1
2

ρε|uε|
2 +

1
2
|∇x cε|

2 +
1
ε2

(Fe(ρε)−F ′
e (1)(ρε − 1) − Fe(1))
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We can write

1
ε2

(Fe(ρε) − F ′
e (1)(ρε − 1) − Fe(1)) &

�
ρε − 1

ε

�2

ess

+
(1 + ρε)res

ε2
. (15)

Using the boundedness of the energy

ρε(t
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Eε

�
ρ, u, c

���U, C
�

=

Z
Ω

�
1
2

ρ|u − U|2 +
1
2
|∇x c − ∇x C|2

+
1
ε2

(Fe(ρ) − F ′
e (1)(ρ − 1) − Fe(1))

�
dx

Eε

�
ρε, cε, uε

���C, U
�it=τ

t=0
+

Zτ

0

Z
Ω

h
S(∇x uε) : (∇x uε − ∇x U) + µ2

ε
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Using the same treatment for the convective terms, we get:

Eε

�
ρε, cε, uε

���C, U
�it=τ

t=0
+

1
2

Zτ

0

Z
Ω

h
(S(∇x uε) − S(∇x U)) : (∇x uε − ∇x U) + µ2

ε

i
dx dt

6 −

Zτ

0

Z
Ω

[Fc(cε)divx uε + µεF ′
c (cε)] dx dt

+

Zτ

0

Z
Ω

(U − uε) · (−∇x Π − divx (∇x C ⊗ ∇x C)) dx dt

−

Zτ

0

Z
Ω

(∇x cε ⊗ ∇x cε) : ∇x U dx dt

+

Zτ

0

Z
Ω

∂t(∆x C)cε dx dt +

Zτ

0

Z
Ω

∆x C [µε − uε · ∇x cε] dx dt

+

Zτ

0

Z
Ω

∂t
1
2
|∇x C|2 dx dt + c1

Zτ

0
Eε

�
ρε, cε, uε

���C, U
�

dt .

(18)
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The only term different to the weak-strong uniqueness case is the one in
∇x Π − ∇x Fc(C):h

Eε

�
ρε, cε, uε

���C, U
�it=τ

t=0
.

Zτ

0
Eε

�
ρε, cε, uε

���C, U
�

dt

+

Zτ

0

Z
Ω

(U − uε) · ∇x (Π − Fc(C)) dx dt.

From the assumptions on the initial conditions Eε

�
ρε, cε, uε

���C, U
�

(0) → 0 as
ε → 0.
Using the continuity equation we also have:Zτ

0

Z
Ω

(U − uε) · ∇x
~Π dx dt = −

Zτ

0

Z
Ω

(1 − ρε)uε · ∇x
~Π dx dt −

�Z
Ω

ρε
~Π dx

�t=τ

t=0

+

Zτ

0

Z
Ω

ρε∂t
~Π dx dt,

with ~Π = Π − Fc(C) and this term converges uniformly to 0 over τ ∈ [0, T ].
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Application: numerical approximation

Work in collaboration with Eduard Feireisl and Bangwei She:
1. Discretise the problem by a stable and consistent scheme
2. Prove that the numerical solutions converge to a dissipative
weak solution and thus, by the weak-strong uniqueness principle,
prove the unconditional convergence to a strong solution if the later
exists
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Starting point:
T. Karper: A convergent FEM-DG method for compressible Navier-Stokes
system, 2013 (γ > 3)
E. Feireisl and M. Lukáčová-Medvid’ová: Convergence of a mixed finite
element–discontinuous Galerkin scheme for the isentropic Navier-Stokes system
via dissipative measure-valued solutions, 2018 (γ > 1)
Here and hereafter we suppose that

p ∈ C[0, ∞) ∩ C2(0, ∞), p(0) = 0, p ′(ρ) > 0 for ρ > 0;

the pressure potential
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Function spaces
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Discrete Laplace operator
For any v ∈ Xh we define ∆hv ∈ Wh := {v ∈ Xh |

R
Ω

v dx = 0} such that

−

Z
Ω

∆hv w dx = B(v , w) for any w ∈ Wh, (21)

B(v , w) =

Z
Ω

∇hv ·∇hw dx+
X
σ∈E

Z
σ

�
[[w ]]n · {{∇hv }} + [[v ]]n · {{∇hw}} +

cB

h1+β
[[v ]][[w ]]

�
dσ,

where cB > 0 is a sufficient large constant to ensure the coercivity. The following
identity holds:

B(v , v − w) =
1
2

B(v , v) −
1
2

B(w , w) +
1
2

B(v − w , v − w).

Furthermore, we define the following seminorms

|v
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Numerical scheme
Z

Ω

Dtρ
k
hϕh dx −

X
σ∈E

Z
σ

Fup
h (ρk

h, uk
h)[[ϕh]] dσ = 0, ∀ϕh ∈ Qh;Z

Ω

Dt(ρ
k
h
cuk

h) · φh dx −
X
σ∈E

Z
σ

Fup
h (ρk

h
cuk

h, uk
h) · [[cφh]] dσ + ν

Z
Ω

∇huk
h : ∇hφh dx

+ η

Z
Ω

divhuk
hdivhφh dx =

Z
Ω

pk
hdivhφh dx +

Z
Ω

(f k
h − ∆hck

h)∇hck
h · φh dx , ∀φh ∈ Vh;Z

Ω

(Dtc
k
h + uk

h · ∇hck
h)ψh dx =

Z
Ω

�
∆hck

h − f k
h

�
ψh dx , ∀ψh ∈ Xh,

where Dt v k
h =

vk
h −vk−1

h
∆t for all k = 1, . . . , NT , pk

h = p(ρk
h), η = d−2

d ν + λ > 0 and

f k
h =


2(ck

h + 1) if ck
h ∈ (−∞, −1),

(ck
h)3 − ck−1
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Some estimates

Lemma (Sobolev inequality)

Let r > 0 be a function defined on Ω ⊂ Rd such that

0 < cM 6
Z

Ω

r dx , and
Z

Ω

rγ dx 6 cE for γ > 1,

where cM and cE are some positive constants. Then

∥vh∥2
Lq(Ω) . c(∥∇hvh∥2

L2(Ω) +

Z
Ω

r |v̂h |
2 dx)

for any vh ∈ Vh, and 1 6 q 6 6 for d = 3, 1 6 q < ∞ for d = 2, where
c = c(cM , cE ).
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Stability
Conservation of mass:Z

Ω

ρk
h dx =

Z
Ω

ρk−1
h dx = · · · =

Z
Ω

ρ0
h dx =

Z
Ω

ΠQ
h ρ0 dx =

Z
Ω

ρ0 dx , ∀ k = 1, . . . , NT .

Discrete energy balance: Let (ρk
h, uk

h, ck
h) satisfy the numerical scheme, then:

Dt

Z
Ω

1
2

ρk
h

���cuk
h

���2
+ P(ρk

h) dx + Dt

�Z
Ω

F (ck
h) dx +

1
2
|∥ck

h∥|2B
�

+ ν∥∇huk
h∥2

L2 + η∥divhuk
h∥2

L2 + ∥Dtc
k
h + uk

h · ∇hck
h∥2

L2 = −Dnum,

where Dnum > 0 is the numerical dissipation

Dnum =
∆t
2

Z
Ω

ρk−1
h |Dt

cuk
h |2 dx +

1
2

X1
∂



Introduction of the model
Overview on the existing results

Dissipative weak solutions and main results
Relative energy



Introduction of the model
Overview on the existing results

Dissipative weak solutions and main results
Relative energy

Application: weak-strong uniqueness
Application: incompressible limit

Application: numerical approximation

There exist ξ ∈ co{ρk−1
h , ρk

h} and ζ ∈ co{ρk
K , ρk

L} for any σ = K |L ∈ E such thatZ
Ω

Dt P(ρk
h) dx +

Z
Ω

p(ρk
h)divhuk

h dx

= −
∆t
2

Z
Ω

P ′′(ξ)|Dtρ
k
h |

2 dx −
X
σ∈E

Z
σ

P ′′(ζ)[[ρk
h ]]2

�
hε +

1
2
|uk

σ · n|
�

dσ 6 0.

Take ψh = Dtc
k
h + uk

h · ∇hck
h ∈ Xh:Z

Ω

��Dtc
k
h + u+ k

h k t k
h k
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Uniform bounds

Lemma

Let (ρh, uh, ch) be a solution to the numerical scheme for γ > 1. Then:

∥ρh | buh |
2∥L∞L1 . 1, ∥ρh∥L∞Lγ . 1, ∥ρh buh∥

L∞L
2γ

γ+1
. 1,

∥∇huh∥L2L2 . 1, ∥divhuh∥L2L2 . 1, ∥uh∥L2Lp . 1, ∥ρhuh∥L2Lq . 1,

sup
t∈(0,T)

|∥ch∥| ≈ sup
t∈(0,T)

|∥ch(t)∥|B . 1, ∥fh∥L∞L2 ≈ ∥ch∥L∞L2 . ∥F (ch)∥L∞L1 . 1,

∥ch∥L∞Lp . sup
t∈(0,T)

|∥ch∥|B + ∥ch∥L∞L2 . 1, ∥Dtch + uh · ∇hch∥L2L2 . 1,

∥∆hch∥L2L2 . 1, ∥Dtch∥L2L3/2 . 1.

where p ∈ [1, ∞), q ∈ [1, γ) if d = 2 or p = 6, q = 6γ
γ+6 if d = 3.
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The idea of the proof is to construct a mapping F that satisfies the topological
degree theory. Define:

V =
�

(ρk
h, Uk

h) ∈ Qh × Mh, ρk
h > 0

	
,

W =
�

(ρk
h, Uk

h) ∈ Qh × Mh, ∥Uk
h∥ 6 C2, ϵ < ρk

h < C1
	

,

where Uk
h := (uk

h, ck
h) ∈ Vh × Xh =: Mh and the norm ∥Uk

h ∥ is given by

∥Uk
h ∥ ≡ ∥uk

h∥L6 + ∥ck
h∥L2 .
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Next, for ζ ∈ [0, 1] and U⋆ = (u⋆, c⋆) we define

F : V × [0, 1] → Qh × Mh, (ρk
h , Uk

h , ζ)
⇔ ΠF◁F104ψ5▷9776ψTfψ6▷034ψ58300

k
h ,∂ k

h , ζk

, (u ⋆,c⋆7372 0 Td [(Q)]TJ/F94 5.0 T7.5716 Tf 6.18300 Td [(Q)]T6282 0 Td5[(Q)]TJ/F94 5.0 T7.5716 Tf 6.18200 Td5[(Q)]T,',6272 0 Td5[(Q)]TJ/F94 5.0 T7.5716 Tf 6.18300 Td5[(Q)]T2772 0 Td5[(Q)]TJ/F94 5.0 T7.5716 Tf 6. Td 0 Td5[(Q)]T 2762 0 Td5[(Q)]TJ/F94 5.0 T7.5716 Tf 6. Td 0 Td5[(Q)]T, fif,
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Consistency

Theorem

Let (ρ
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