


Magnetorheological uids

Figure: Magnetite particles aggregating into chains. Image from K. Jiangang et al (Miner. Enginrg. '15)

Suspension of non-colloidal ferromagnetic particles in a non-magnetizable
uid
! Brownian motion e ects are neglected

.05-10 m size particles

! Volume fractions of  10% to  50%
Once a magnetic eld is applied, the particles organize in chain structures
Millisecond transformation form uid to semi-solid state
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Typical modeling approaches

Phenomenological approach

I Jacob Rabinow (uee trans., 48)
I Basic mathematical model by Rosensweig Neuringer (phys. Fuids, 64)
F Shliomis (sov. phys. JeTP, 72) iIMmproves model by allowing \internal rotations"

I Classical thermodynamics approach
F




Cauchystress

Magnetorheological uids exhibit non-Newtonian behavior
In shear experiments the Bingham constitutive law models response of

magnetotheological uids

Newtonian incompressible uids

= pl+2 e(v); e(v)= %(r v+r ty)

°= 2 eqv); Av)= A %tr(A)

Bingham incompressible uids

(R
ifjj
ifjj

e(v)
Y je(v)j

y; then =2 e(v)+
y; thene(v)= 0

Figure: stress versus strain rate
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Balance of forces and torques

The force can be written in terms of the magnetic Maxwell stress,

F:= %J’Hizr 0 F=dv( ™9) B cur("B);

0 ifx2 g
B cur(”B) ifx2 ¢
Hence, we can write the balance of forces and torques on each particle as

mag.= B B %"ijZI =) div( ™9)=

Z Z Z
0= nt ) ds+ J M9n()Kds B curl("B)dx;
@) @) PO)
z z
0= n() x x() ds+ J MOn)Kk x x{) ds
@) q()

(B curl(*B)) x x{) dx:
PO
= THL=V is the Alfven number
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Some results regarding function spaces

Let O RY be any open, bounded, multiply connected set with boundary
= @ of class C. The exterior boundary will be denoted by, and by
iv =1 1, the other components of . De ne Y to be the Hilbert
space of vector elds,
n 0
Y:= u2L%0;RY jdivu2 L%0); curll “u) 2 L2(O;RY);u n2 H2( o) ;

for the norm,

kwky = kwWk| 2 (g.ge) + kdivwk 2oy + curl( “w ) @ + kw Ky
then for allw 2 Y we have, W 2 HY(O;;RY) fori = 1;:::; and
w o; ) Coi kaY :
HY(O;;RY)

(small) extension of Prop. 3.1 in Foias & Temam afn. sc. norm. super. pisa, '78)
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Some results regarding function spaces

De ne a new norm onY by

W]y := kdivwk 2oy + curl( “w) + kw Nk s

L2(0;RY)

then Y is also a Hilbert space with nornj ]y .

There exists a constant, c= ¢(O), such that




The function spaces

Inner product space for the velocity,
n

0
V= v2H ( gRYjdw=0in gv=v)+1 ) (x x))yon@ ) :
z
(Vj )y= 2e(v)e( )dx:
F
Inner product space for the magnetic induction,

n
Y= w2L?; RYjdiv(w) 2 L?() ; curl(w) 2L%(; RY);
(0]
w n2HZ( ) ;

z z
(hj )y= div(h)div( )dx+ curl(“h) curl(” )dx

Z
+ (hn)( n)ds:
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Variational formulation of Stokes' equation

Multiply with am appropriate test function,

VA Z
n(). ds+ 2e(v):e( )dx=0:
[ Kzl@( ) E
Use balance of forces and torques,
z z
J Mn)K ds B curl(”B) . dx
[ K:1@( ) P

z
+ 2e(v):e( )dx=0:

Findv 2V,

N

(Vi )+ M%e( Ydx =0 forall 2V:
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Augmented variational formulation of Maxwell's
equations
For an appropriate test function,

multiply the divergence part by-—div( )

multiply the rotational part by - curl(" )
multiply the exterior boundary condition by,-  n

Z Z Z
(hj )y= div(h)div( )dx+ curl(“h)curl(® )dx+ (hn)( n)ds:

Find B 2 Y such that,

R—m(Bj )y = v B]curl(® )dx+R—m (6°n)( n)ds;

P 0

forall 2Y.
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Variational formulation of the problem

Find (v;B) 2V Y such that,

Z Z
Vi )+ R*(BJ' )y = Mage( )dx + v Bl.curl(® ) dx
F P z
tR (b°.n)( .n)ds;

forall (; )2V Y . Naturally, a norm is associated to the above inner
(cross-) product space denoted byjj ( ; )jjj == kk  + g []v.

The pair (v; B) satis es the strong form of Maxwell's and Stokes' equations as

well as their BC if and only if it is a solution to the above weak formulation.
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Equivalence between weak and strong form of the
problem

One direction is clear

Recover Maxwell's equations: introduce : R% ! [0;1]

1 if d(X, 0) <

(x) = o
0 ifd(x; ¢)> 2

Using the approach of Ledyzhenskayas, de ne (x) := ( b9xs; b3x;; bxz).
Seta (x



The test function

ConstructW:= V  r p and verify,

div(W)=0; curl(W)=Ryw B ,; W.n=0
Construct (=B W a 2Y,

Z
divBdiv(B W a)dx
Z
+ [eurl(*B) Rnww B ., lcur(®(B W a))dx
z
+ [(B bY%.n)[(B W a).n]ds=0

Using the properties of the vector eldd¥ anda we obtain:
z z z

jdivBj?dx+ jeurl("B) Ryv B ,j?dx+ (B b%.n°ds=0
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The Altman-Shinbrot xed point theorem

Let H denote a real or complex Hilbert space, arf8l and B, denote the sphere
and the closed ball of radius centered at zero, respectively:

S =fx2Hjkxky =rg; Br=fx2Hjkxk, rg:

Let H be an operator on the separable Hilbert spat¢¢, continuous in the weak
topology onH. If there is a positive constant r such thak (Hx; x) k xkﬁ for
all x 2 B, then H has a xed point inB;.

Corollary: Let G be an operator on the separable Hilbert spa¢€, continuous in
the weak topology onH. Let y be an element oH. If there exists a positiver
such that either<(Gx vy;x) Oforallx2S, OR

<(Gx y;x) Oforallx?2S; theny is in the range ofG.

Corollary: Let G be an operator on the separable Hilbert spat¢é, continuous in
the weak topology onH. Then, zero is in the range ofs if (Gx; x) is of one sign
on some spheres; .
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Existence

For allv;B; ; we de ne the following expressiol@ by,

Ql(v;B);(; )I:=



Existence

The nonlinear operator- : (v;B) 7! F (v;B) is continuous in the weak topolog
of the product spaceV Y .

If the magnetic Reynolds numbelRy, is small then

(F(v;B);(v;B)) %jjj (V;B)jjj2 forall (v;B)2VY :

If the magnetic Reynolds humberR, satis es,

1 ZCFijije%




Existence and comments

Apply Altman-Shinbrot theorem to the operator equation
Show there existy such that

(F(v:B) (f:g)(viB)) O
for all (v;B) with jjj(v;B)jjj = r
Selectr = 2 jjj(f; 9)jjj
The case ofR, 0 can be thought o as a limit case of the above model.

Rm 0 the system becomes weakly coupled and, existence and uniquene:
follow by invoking the Lax-Milgram lemma, once higher integrability of the
magnetic induction is established

In two spatial dimensions system can also be solved analytically. Resulting
behavior is of a Bingham type uid.
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