Figure: Magnetite particles aggregating into chains. Image from K. Jiangang et al (Miner. Enginrg. '15)

Suspension of non-colloidal ferromagnetic particles in a non-magnetizable uid

Brownian motion elects are neglected

.05-10 m size particles

! Volume fractions of 10% to 50%

Once a magnetic eld is applied, the particles organize in chain structures Millisecond transformation form
uid to semi-solid state

Phenomenological approach

- I Jacob Rabinow (AIEE Trans., '48)
- Basic mathematical model by Rosenswei α Neuringer (Phys. Fluids, '64)
	- ^F Shliomis (Sov. Phys. JETP, '72) improves model by allowing \internal rotations"
- ^I Classical thermodynamics approach
	- F

Cauchystress

(

Magnetorheological
uids exhibit non-Newtonian behavior

In shear experiments the Bingham constitutive law models response of magnetotheological
uids

Newtonian incompressible
uids

= pl+2 e(v); e(v) =
$$
\frac{1}{2}
$$
(r v+r^tv)
⁰= 2 e⁰(v); A⁰(v) = A $\frac{1}{n}$ tr (A)

Bingham incompressible
uids

if j j y; then = 2 e(v) +
$$
y \frac{e(v)}{je(v)}
$$

if j j y; then $e(v) = 0$

Figure: stress versus strain rate

Balance of forces and torques

The force can be written in terms of the magnetic Maxwell stress,

$$
\mathbf{F} := \begin{array}{ccc} \frac{1}{2}j\mathbf{H}j^{2}r & 0 & \mathbf{F} = \text{div}(\begin{array}{c} \text{mag} \\ \text{mag} \end{array}) & \mathbf{B} & \text{curl}(\mathbf{AB});\\ \text{mag} \\ \text{mag} \\ \text{mag} = \mathbf{AB} & \mathbf{B} \begin{array}{ccc} \frac{1}{2} \wedge j\mathbf{B}j^{2}l & = \end{array} & \text{div}(\begin{array}{c} \text{mag} \\ \text{mag} \end{array}) = \begin{array}{ccc} 0 & \text{if } \mathbf{x} \ 2 & \text{if } \mathbf{x} \end{array}
$$

Hence, we can write the balance of forces and torques on each particle as

$$
0 = \begin{array}{c c c c c} & \text{if} & \text{if} & \text{if} \\ \mathbf{a} & \text{if} & \text{if} \\ \mathbf{b} & \text{if} & \text{if} \\ \mathbf{c} & \text{if} & \text{if} \\ \mathbf{d} & \text{if} & \text{if} \end{array}
$$
\n
$$
0 = \begin{array}{c c c} & \text{if} & \text{if} & \text{if} \\ \mathbf{a} & \text{if} & \text{if} \\ \mathbf{a} & \text{if} & \text{if} \\ \mathbf{d} & \text{if} & \text{if} \\ \mathbf{d} & \text{if} & \text{if} \end{array}
$$
\n
$$
0 = \begin{array}{c c c} & \text{if} & \text{if} & \text{if} \\ \mathbf{a} & \text{if} & \text{if} \end{array}
$$
\n
$$
0 = \begin{array}{c c c} & \text{if} & \text{if} & \text{if} \\ \mathbf{a} & \text{if} & \text{if} \\ \mathbf{a} & \text{if} & \text{if} \\ \mathbf{a} & \text{if} & \text{if} \end{array}
$$

 $=$ $-\overline{H} \overline{L} = \overline{V}$ is the Alfven number

Some results regarding function spaces

Let O \mathbb{R}^d be any open, bounded, multiply connected set with boundary \dot{z} = \circledR of class C^2 . The exterior boundary will be denoted by₀ and by $_{\sf j};\;{\sf j}$ = 1; $:\,:;\;\;\;\;\;\;$ 1, the other components of $\,.\,$ De ne $\, {\sf Y}$ to be the Hilbert space of vector elds,

Y:= n ${\sf u}$ 2 L 2 (O; ${\sf R}^{\rm d}$) j div ${\sf u}$ 2 L 2 (O); curl($^{\wedge}{\sf u}$) 2 L 2 (O; ${\sf R}^{\rm d}$); ${\sf u}$ $\;$ n 2 H $^{1=2}$ ($_{\rm 0})$ o ;

for the norm,

Proposition

$$
k{\boldsymbol{w}} k_{\gamma} := k{\boldsymbol{w}} k_{L^2(O; \mathbf{R}^d)} + k {\text{{\rm div}}} \, {\boldsymbol{w}} k_{L^2(O)} + \text{ curl}(\stackrel{\wedge}{\ \cdot\, {\boldsymbol{w}}})_{L^2(O; \mathbf{R}^d)} + k {\boldsymbol{w}} \ \ n k_{H^{1\equiv 2}(-_0)} \ ;
$$

then for all **w** 2 Y we have, $\mathbf{w}_{\}_{{O_i}}$ 2 H¹(O_i; \mathbb{R}^d) for i = 1;:::; and

$$
\textbf{w} \underset{O_i}{\sim} \underset{H^1(O_i; \mathbb{R}^d)}{\sim} C_{O_i} \textbf{kw} \textbf{k}_Y:
$$

(small) extension of Prop. 3.1 in Foias & Temam (Ann. Sc. norm. super. Pisa, '78)

Some results regarding function spaces

Dene a new norm onY by

Proposition

$$
[\boldsymbol{w}]_{Y} := \text{kdiv}\,\boldsymbol{w}\,k_{L^2(O)} + \text{ curl}(\stackrel{\wedge}\wedge\boldsymbol{w})\,\, \underset{L^2(O;\mathbf{R}^d)}{\sim} + \text{ k}\boldsymbol{w}\ \ \, \text{n}\,k_{H^{1=2}(-_0)}\,;
$$

then Y is also a Hilbert space with norm $\vert \mathbf{y} \vert$.

There exists a constant, $c = c(0)$, such that

Theorem (Poincare type in type in \mathcal{N}) is the \mathcal{N} (Y) is the \mathcal{N}

The function spaces

Inner product space for the velocity,

\n
$$
V = \mathbf{v} 2 \mathbf{H}_{0}^{1}(\mathbf{F}; \mathbf{R}^{d}) \mathbf{j} \operatorname{div} = 0 \text{ in } \mathbf{F}; \mathbf{v} = \mathbf{v}^{(\mathbf{F})} + \mathbf{i}^{(\mathbf{F})} \mathbf{(x - x^{(\mathbf{F})})} \text{ on } \mathbf{Q}^{\mathbf{p}^{(\mathbf{F})}}:
$$
\n
$$
(\mathbf{v} \mathbf{j})_{V} = \begin{array}{c} 2\mathbf{e}(\mathbf{v}): \mathbf{e}(\mathbf{v}) \, \mathrm{d}\mathbf{x} \text{ in } \mathbf{R}^{d} \end{array}
$$

Inner product space for the magnetic induction,

Y =
$$
\mathbf{w} \times 2 \mathsf{L}^2
$$
; \mathbb{R}^d) j div(**w**) $\times 2 \mathsf{L}^2$ (; curl($\wedge \mathbf{w}$) $\times 2 \mathsf{L}^2$ (; \mathbb{R}^d);
\n**w** n 2 H¹⁼²(₀) ;

$$
(\mathbf{h} \mathbf{j})_{\gamma} = \begin{vmatrix} Z & Z \\ \text{div}(\mathbf{h}) \, \text{div}(\mathbf{h}) \, \text{div}(\mathbf{h}) & \text{curl}(\mathbf{h}) \, \text{curl}(\mathbf{h}) \, \text{div}(\mathbf{h}) \\ Z & + \quad (\mathbf{h} \, \mathbf{n})(\mathbf{n}) \, \text{d} \mathbf{s} \end{vmatrix}
$$

Variational formulation of Stokes' equation

Augmented variational formulation of Maxwell's equations

For an appropriate test function, multiply the divergence part by $_{\overline{\mathsf{R}_{\mathsf{m}}}}$ div() multiply the rotational part by $_{\overline{\mathsf{R}_m}}$ curl(^) multiply the exterior boundary condition by $_{\overline{R_{m}}}$ n

(**h** j)_Y = div(**h**) div()d**x**+ curl(^**h**) curl(^)d**x**+ (**h n**)(**n**)ds: Z Z Z 0

Find B 2 Y such that,

$$
\frac{Z}{R_m} (B j)_{\gamma} = \frac{Z}{[v \quad B] \operatorname{curl}(\wedge}) dx + \frac{Z}{R_m} (b^0 \, n)(n) \, ds;
$$

for all $2 Y$

Variational formulation of the problem

Find $(v; B)$ 2 V Y such that,

$$
(\mathbf{v} \mathbf{j})_{V} + \frac{Z}{R_{m}} (\mathbf{B} \mathbf{j})_{Y} = \begin{pmatrix} Z & Z \\ \text{mag}_{\mathbf{e}}(z) \, \mathrm{d}x + \frac{Z}{\mathbf{w}} \mathbf{B} \cdot \mathrm{curl}(\mathbf{w}) \, \mathrm{d}x \\ \mathbf{F} & \mathbf{F} & Z \\ + \frac{Z}{R_{m}} \left(\mathbf{b}^{0} \cdot \mathbf{n} \right) \left(\mathbf{w} \right) \, \mathrm{d}s;
$$

for all (;) 2 V Y . Naturally, a norm is associated to the above inner (cross-) product space denoted b**jj**j(; ;)jjj := k k _V + $_{\overline{\mathsf{R}_m}}$ [] $_{\mathsf{Y}}$.

 \mathbb{F} (N., Vernescu (Banach J. Math. Anal., '24))

The pair $(v; B)$ satis es the strong form of Maxwell's and Stokes' equations as well as their BC if and only if it is a solution to the above weak formulation.

Equivalence between weak and strong form of the problem

One direction is clear

Recover Maxwell's equations: introduce : \mathbb{R}^d ! [0; 1]

$$
(\mathbf{x}) = \begin{cases} 1 & \text{if } d(\mathbf{x}; 0) < 0; \\ 0 & \text{if } d(\mathbf{x}; 0) > 2 \end{cases}
$$

Using the approach of Ledyzhenskaya,, de ne $(x) := (b_2^0x_3; b_3^0x_1; b_1^0x_2).$ Set a (x

The test function

Construct $W := V$ r p and verify, $div(\mathbf{W}) = 0$; curl($\wedge \mathbf{W}$) = R_m \mathbf{v} **B** ϕ ; **W** .n= 0 Construct $:= B \mathbf{W} \mathbf{a} 2 \mathbf{Y}$, Z $div B div(B \ W a) dx$ + [curl(^B) R_m **v** B _P].curl(^(B **W a**)) d**x** Z + $[(B \ b^0).n][(B \ W \ a).n]$ ds = 0 Z 0

Using the properties of the vector elds W and a we obtain:

$$
\begin{array}{ccc}\nZ & Z & Z \\
\text{jdiv} \mathbf{B}j^{2} \, \mathrm{d} \mathbf{x} + \text{jcurl} (\wedge \mathbf{B}) & R_{m} \mathbf{v} & \mathbf{B} & \mathrm{p}j^{2} \, \mathrm{d} \mathbf{x} + \text{jdiv} \mathbf{B}^{0} \\
\text{jdiv} \mathbf{B}j^{2} \, \mathrm{d} \mathbf{x} + \text{jdiv} \mathbf{B} & R_{m} \mathbf{v} & \mathbf{B} & \mathrm{p}j^{2} \, \mathrm{d} \mathbf{x} + \text{jdiv} \mathbf{B}^{0} \\
\text{m} & \text{m} & \text{m} & \text{m} \\
\end{array}
$$

0

The Altman-Shinbrot fixed point theorem

Let H denote a real or complex Hilbert space, and S_r and B_r denote the sphere and the closed ball of radius r centered at zero, respectively:

 $S_r = fx \ 2 H j kx k_H = rg; B_r = fx \ 2 H j kx k_H$ rg:

Theorem (Altman, Bull. Acad. Polon. Sci. '57; Shinbrot, ARMA '64)

Let H be an operator on the separable Hilbert space H, continuous in the weak topology on H. If there is a positive constant r such that $\langle Hx | x \rangle$ kx k_H^2 for all $x \geq B_r$, then H has a fxed point in B_r .

Corollary: Let G be an operator on the separable Hilbert space H, continuous in the weak topology on H . Let y be an element of H . If there exists a positive r such that either $\langle Gx - y; x \rangle$ 0 for all x 2 S_r OR \langle Gx - y; x) 0 for all x 2 S_r then y is in the range of G.

Corollary: Let G be an operator on the separable Hilbert space H, continuous in the weak topology on H. Then, zero is in the range of G if $(Gx; x)$ is of one sign on some sphere S_r .

Existence

For all \mathbf{v} ; \mathbf{B} ; we define the following expression $\qquad \mathbf{Q}$ by,

 $\text{Q}[\text{(v ; B)}$; (;)] := $-$;9 Fock eartz:and rRiessz's);fol32(allem)}TzJ/F333 s s 4oB

Existence

Lemma

The nonlinear operator $F : (v, B) \nabla F(v, B)$ is continuous in the weak topology of the product space $V \times Y$.

Lemma

If the magnetic Reynolds number, R_m is small then

$$
(F(\mathbf{v}; \mathbf{B}); (\mathbf{v}; \mathbf{B}))
$$
 $\frac{1}{2}$ jjj($\mathbf{v}; \mathbf{B}$)jjj² for all ($\mathbf{v}; \mathbf{B}$) 2 V xY:

Theorem

If the magnetic Reynolds number, R_m satisfes, m m R-8 R_0

$$
1 - 2^{C_{FP}j\boldsymbol{b}^0jmes_d}
$$

Apply Altman-Shinbrot theorem to the operator equation Show there exists Γ such that

$$
(F(v;B)-(f;g);(v;B))\quad 0
$$

for all (v, B) with $|j|(v, B)$) $|j| = r$ Select $r = 2$ jjj $(f : g)$ jjj

The case of R_m 0 can be thought of as a limit case of the above model.

R^m 0 the system becomes weakly coupled and, existence and uniqueness follow by invoking the Lax-Milgram lemma, once higher integrability of the magnetic induction is established

In two spatial dimensions system can also be solved analytically. Resulting behavior is of a Bingham type fuid.