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Magnetorheological uids

Figure: Magnetite particles aggregating into chains. Image from K. Jiangang et al (Miner. Enginrg. '15)

� Suspension of non-colloidal ferromagnetic particles in a non-magnetizable
uid

! Brownian motion e�ects are neglected

� .05-10 � m size particles
! Volume fractions of � 10% to � 50%

� Once a magnetic �eld is applied, the particles organize in chain structures

� Millisecond transformation form uid to semi-solid state
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Typical modeling approaches

� Phenomenological approach
I Jacob Rabinow (AIEE Trans., '48 )
I Basic mathematical model by Rosensweig& Neuringer (Phys. Fluids, '64)

F Shliomis (Sov. Phys. JETP, '72 ) improves model by allowing \internal rotations"
I Classical thermodynamics approach

F



Cauchystress

� Magnetorheological uids exhibit non-Newtonian behavior

� In shear experiments the Bingham constitutive law models response of
magnetotheological uids

� Newtonian incompressible uids

� = � p I+ 2 � e(vvv); e(vvv) =
1
2

(r vvv+ r t vvv)

� 0 = 2 � e0(vvv); A0(vvv) = A �
1
n

tr (A)

� Bingham incompressible uids

(
if j� j � � y ; then � = 2 � e(vvv) + � y

e(vvv)
je(vvv)j

if j� j � � y ; then e(vvv) = 0

Figure: stress versus strain rate
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Balance of forces and torques

� The force can be written in terms of the magnetic Maxwell stress,

FFF:= �
1
2

jHHHj2 r � () FFF = div( � mag ) � BBB � curl(�̂ BBB);

� mag := �̂ BBB
 BBB�
1
2

�̂ jBBBj2I =) div( � mag )=

(
0 if xxx 2 
 F;

BBB � curl(�̂ BBB) if xxx 2 
 P:

� Hence, we can write the balance of forces and torques on each particle as,

0 =
Z

@P(� )

� nnn(� ) ds+ �
Z

@P(� )

J � mag nnn(� )Kds� �
Z

P(� )

BBB� curl(�̂ BBB) dxxx;

0 =
Z

@P(� )

� nnn(� ) �
�
xxx � xxx(� )

�
ds+ �

Z

@P(� )

J � mag nnn(� )K�
�
xxx � xxx(� )

�
ds

� �
Z

P(� )

(BBB� curl(�̂ BBB)) �
�
xxx � xxx(� )

�
dxxx:

�
�

�
�

=
�
� H L=� V

�
is the Alfven number

6 / 18



Some results regarding function spaces

Proposition
Let O � IRd be any open, bounded, multiply connected set with boundary
� := @O of class C2. The exterior boundary will be denoted by� 0 and by
� j ; j = 1; : : : ; � � 1, the other components of� . De�ne Y to be the Hilbert
space of vector �elds,

Y:=
n

uuu 2 L2(O; IRd ) j divuuu 2 L2(O); curl( �̂ uuu ) 2 L2(O; IRd ); uuu � nnn 2 H1=2(� 0)
o

;

for the norm,

kwwwkY := kwwwkL2(O;IRd ) + kdivwwwkL2(O) +


 curl( �̂ www )





L2(O;IRd )
+ kwww � nnnkH1=2(� 0) ;

then for all www 2 Y we have, www�
�O i

2 H1(Oi ; IRd ) for i = 1; : : : ; � and



 www�

�O i






H1(O i ;IRd )
� CO i kwwwkY :

� (small) extension of Prop. 3.1 in Foias & Temam (Ann. Sc. norm. super. Pisa, '78)
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Some results regarding function spaces

Proposition
De�ne a new norm onY by

[www]Y := kdivwwwkL2(O) +


 curl( �̂ www )





L2(O;IRd )
+ kwww � nnnkH1=2(� 0) ;

then Y is also a Hilbert space with norm[�]Y .

Theorem (Poincar�e type inequality for(Y; [�]Y ))
There exists a constant, c:= c(O), such that



The function spaces

� Inner product space for the velocity,

V =
n

vvv 2 H1
� 0

(
 F; IRd ) j divvvv= 0 in 
 F; vvv= vvv (� )+ !!! (� ) � (xxx � xxx(� ) ) on @P(� )
o

:

(vvv j ��� )V =
Z


 F

2e(vvv):e(��� ) dxxx:

� Inner product space for the magnetic induction,

Y =
n

www 2 L2(
; IRd ) j div(www) 2 L2(
) ; curl(�̂ www) 2L2(
; IRd );

www � nnn 2 H1=2(� 0)
o

;

(hhh j    )Y =
Z




div(hhh) div(   )dxxx+
Z




curl(�̂ hhh)�curl(�̂   )dxxx

+
Z

� 0

(hhh�nnn)(   �nnn)ds:
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Variational formulation of Stokes' equation

� Multiply with am appropriate test function,

�
Z

[ K
� = 1@P (� )

� nnn(� ) .��� ds+
Z


 F

2e(vvv):e(��� ) dxxx= 0:

� Use balance of forces and torques,

�
Z

[ K
� = 1@P (� )

J� magnnn(� )K.��� ds� �
Z


 P

�
BBB� curl(�̂ BBB)

�
.��� dxxx

+
Z


 F

2e(vvv):e(��� ) dxxx= 0:

� Find vvv 2 V ,

(vvv j ��� )V + �
Z


 F

� mag:e(��� ) dxxx = 000 for all ��� 2 V :
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Augmented variational formulation of Maxwell's
equations

For an appropriate test function,

� multiply the divergence part by �
Rm

div(   )

� multiply the rotational part by �
Rm

curl (�̂   )

� multiply the exterior boundary condition by�
Rm

   � nnn

(hhh j    )Y =
Z




div(hhh) div(   )dxxx+
Z




curl(�̂ hhh)�curl(�̂   )dxxx+
Z

� 0

(hhh�nnn)(   �nnn)ds:

Find BBB 2 Y such that,

�
Rm

(BBB j    )Y = �
Z


 P

[vvv � BBB]�curl (�̂    ) dxxx +
�

Rm

Z

� 0

(bbb0�nnn)(   �nnn) ds;

for all    2 Y .
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Variational formulation of the problem

Find (vvv;BBB) 2 V � Y such that,

(vvv j ��� )V +
�

Rm
(BBB j    )Y = � �

Z


 F

� mag:e(��� ) dxxx + �
Z


 P

[vvv � BBB].curl (�̂    ) dxxx

+
�

Rm

Z

� 0

(bbb0.nnn)(   .nnn) ds;

for all (���;    ) 2 V � Y . Naturally, a norm is associated to the above inner
(cross-) product space denoted byjjj (� ; �)jjj := k�k V + �

Rm
[�]Y .

Theorem (N., Vernescu (Banach J. Math. Anal., '24))
The pair (vvv;BBB) satis�es the strong form of Maxwell's and Stokes' equations as
well as their BC if and only if it is a solution to the above weak formulation.
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Equivalence between weak and strong form of the
problem

� One direction is clear
� Recover Maxwell's equations: introduce� � : IRd ! [0; 1]

� � (xxx) =

(
1 if d(xxx; � 0) < �;

0 if d(xxx; � 0) > 2 �

� Using the approach of Ledyzhenskaya,('63) , de�ne ��� (xxx) := ( b0
2x3; b0

3x1; b0
1x2).

Set aaa� (xxx



The test function

� Construct WWW := � VVV � � r p and verify,

div(WWW )= 0; curl(�̂ WWW )= Rmvvv� BBB� 
 P; WWW .nnn= 0

� Construct    := BBB� WWW � aaa� 2 Y ,

Z




divBBB div(BBB� WWW � aaa� ) dxxx

+
Z




[curl (�̂ BBB)� Rmvvv� BBB� 
 P].curl (�̂ (BBB� WWW � aaa� )) dxxx

+
Z

� 0

[(BBB� bbb0).nnn][(BBB� WWW � aaa� ).nnn] ds = 0

� Using the properties of the vector �eldsWWW and aaa� we obtain:

Z




jdivBBBj2 dxxx+
Z




jcurl (�̂ BBB)� Rmvvv� BBB� 
 Pj
2 dxxx+

Z

� 0

�
�(BBB� bbb0).nnn

�
�2

ds = 0
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The Altman-Shinbrot �xed point theorem

Let H denote a real or complex Hilbert space, andSr and Br denote the sphere
and the closed ball of radiusr centered at zero, respectively:

Sr = f x 2 H j k xkH = rg; Br = f x 2 H j k xkH � r g :

Theorem ( Altman, Bull. Acad. Polon. Sci. '57; Shinbrot, ARMA '64 )
Let H be an operator on the separable Hilbert spaceH, continuous in the weak
topology on H. If there is a positive constant r such that< (Hx; x) � k xk2

H for
all x 2 B r , then H has a �xed point inBr .

Corollary: Let G be an operator on the separable Hilbert spaceH, continuous in
the weak topology onH. Let y be an element ofH . If there exists a positiver
such that either< (Gx � y; x) � 0 for all x 2 Sr OR
<(Gx � y; x) � 0 for all x 2 Sr then y is in the range ofG.

Corollary: Let G be an operator on the separable Hilbert spaceH, continuous in
the weak topology onH. Then, zero is in the range ofG if (Gx; x) is of one sign
on some sphereSr .
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Existence

� For all vvv;BBB; ���;    we de�ne the following expressionQ by,

Q[(vvv;BBB); (���;    )] := � �  



Existence

Lemma
The nonlinear operatorF : (vvv;BBB) 7! F (vvv;BBB) is continuous in the weak topology
of the product spaceV�Y .

Lemma
If the magnetic Reynolds number,Rm, is small then

(F (vvv;BBB); (vvv;BBB)) �
1
2

jjj (vvv;BBB)jjj 2 for all (vvv;BBB) 2 V�Y :

Theorem
If the magnetic Reynolds number,Rm satis�es,

1 � 2
CFPjbbb0jmesd�



Existence and comments

� Apply Altman-Shinbrot theorem to the operator equation

� Show there existsr such that

(F (vvv;BBB) � (fff ; ggg); (vvv;BBB)) � 0

for all (vvv;BBB) with jjj (vvv;BBB)jjj = r

� Select r = 2 jjj (fff ; ggg)jjj

� The case ofRm � 0 can be thought o� as a limit case of the above model.

� Rm � 0 the system becomes weakly coupled and, existence and uniqueness
follow by invoking the Lax-Milgram lemma, once higher integrability of the
magnetic induction is established

� In two spatial dimensions system can also be solved analytically. Resulting
behavior is of a Bingham type uid.
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